Successive cancellation decoding of Reed-Solomon codes

A novel soft-decision decoding algorithm for Reed-Solomon codes over GF(2m) is proposed, which is based on representing them as polar codes with dynamic frozen symbols and applying the successive cancellation method. A further performance improvement is obtained by exploiting multiple permutations of codewords which are taken from the automorphism group of Reed-Muller codes. It is also shown that the proposed algorithm can be simplified in the case of decoding a binary image of the Reed-Solomon code.

[1]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[2]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[3]  David Declercq,et al.  Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.

[4]  Kai Chen,et al.  Improved Successive Cancellation Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[5]  E. J. Weldon,et al.  New generalizations of the Reed-Muller codes-II: Nonprimitive codes , 1968, IEEE Trans. Inf. Theory.

[6]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[7]  Emre Telatar,et al.  Polar Codes for the m-User MAC , 2010 .

[8]  Emre Telatar,et al.  Polar Codes for the $m$-User Multiple Access Channel , 2012, IEEE Transactions on Information Theory.

[9]  Tadao Kasami,et al.  New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.

[10]  Vera Miloslavskaya,et al.  Polar codes with dynamic frozen symbols and their decoding by directed search , 2013, 2013 IEEE Information Theory Workshop (ITW).

[11]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[12]  Alexander Vardy,et al.  Bit-level soft-decision decoding of Reed-Solomon codes , 1991, IEEE Trans. Commun..

[13]  Robert J. McEliece,et al.  Iterative algebraic soft-decision list decoding of Reed-Solomon codes , 2005, IEEE Journal on Selected Areas in Communications.

[14]  Li Ping,et al.  Low-Complexity Soft-Decoding Algorithms for Reed–Solomon Codes—Part II: Soft-Input Soft-Output Iterative Decoding , 2010, IEEE Transactions on Information Theory.

[15]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[16]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[17]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.