Beyond morphological size distribution

In the field of digital image processing, the description of image content is one of the most crucial tasks. Indeed, it is a man- datory step for various applications, such as industrial vision, medi- cal imaging, content-based image retrieval, etc. The description of the image content is achieved through the computation of some predefined features, which can be performed at different scales. Among global features that describe the content of the whole image, the gray level histogram focuses on the distribution of gray levels within the image, while morphological features (e.g., the pattern spectrum) measure the distribution of object sizes in the image. De- spite their broad interest, such morphological size-distribution fea- tures are limited due to their monodimensional nature. Our goal is to review multidimensional extensions of these features able to deal with complementary information (such as shape, orientation, spec- tral, intensity, or spatial information). Moreover, we illustrate each multidimensional feature by an illustrative example that shows their relevance compared to the standard morphological size distribution. These features can be seen as relevant solutions when the standard monodimensional features fail to accurately represent the image

[1]  Edward R. Dougherty,et al.  Hands-on Morphological Image Processing , 2003 .

[2]  Adrian N. Evans,et al.  An evaluation of area morphology scale-spaces for colour images , 2008, Comput. Vis. Image Underst..

[3]  Pierre Soille,et al.  Periodic lines: Definition, cascades, and application to granulometries , 1996, Pattern Recognit. Lett..

[4]  Sébastien Lefèvre,et al.  Spatial Morphological Covariance Applied to Texture Classification , 2006, MRCS.

[5]  Ran El-Yaniv,et al.  Size-density spectra and their application to image classification , 2007, Pattern Recognit..

[6]  J. Weber,et al.  Automatic Building Extraction in VHR Images Using Advanced Morphological Operators , 2007, 2007 Urban Remote Sensing Joint Event.

[7]  Sébastien Lefèvre Extending Morphological Signatures for Visual Pattern Recognition , 2007, PRIS.

[8]  E. Dougherty,et al.  Size distributions for multivariate morphological granulometries: texture classification and statistical properties , 1997 .

[9]  Marcel Worring,et al.  Granulometric analysis of document images , 2002, Object recognition supported by user interaction for service robots.

[10]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Christian Ronse,et al.  Why mathematical morphology needs complete lattices , 1990, Signal Process..

[12]  Marc Van Droogenbroeck,et al.  Robust Analysis of Silhouettes by Morphological Size Distributions , 2006, ACIVS.

[13]  Michael H. F. Wilkinson Generalized pattern spectra sensitive to spatial information , 2002, Object recognition supported by user interaction for service robots.

[14]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[15]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[16]  Ronald Jones,et al.  Attribute Openings, Thinnings, and Granulometries , 1996, Comput. Vis. Image Underst..

[17]  Edward R. Dougherty,et al.  Heterogeneous morphological granulometries , 2000, Pattern Recognit..

[18]  P. Ghosh,et al.  Bi-variate pattern spectrum , 1998, Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237).

[19]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  A. Venetsanopoulos,et al.  The classification properties of the pecstrum and its use for pattern identification , 1991 .

[21]  Vikram M. Gadre,et al.  Multiparametric multiscale filtering, multiparametric granulometries and the associated pattern spectra , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[22]  Marcos Cordeiro d'Ornellas,et al.  Color Image Texture Indexing , 1999, VISUAL.

[23]  Guillermo Ayala,et al.  Spatial Size Distributions: Applications to Shape and Texture Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Jean-François Rivest,et al.  Granulometries and pattern spectra for radar signals , 2006, Signal Process..

[25]  Paul T. Jackway,et al.  Granolds: a novel texture representation , 2000, Pattern Recognit..

[26]  Philippe Salembier,et al.  Antiextensive connected operators for image and sequence processing , 1998, IEEE Trans. Image Process..

[27]  Michael Werman,et al.  Min-Max Operators in Texture Analysis , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Sébastien Lefèvre,et al.  A comparative study on multivariate mathematical morphology , 2007, Pattern Recognit..

[29]  Wilfried Philips,et al.  Majority Ordering and the Morphological Pattern Spectrum , 2005, ACIVS.

[30]  Sébastien Lefèvre,et al.  On morphological color texture characterization , 2007, ISMM.

[31]  Hugues Talbot,et al.  Directional Morphological Filtering , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Michael H. F. Wilkinson,et al.  Connected Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-Scale Images , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Roberto de Alencar Lotufo,et al.  Integrating Size Information into Intensity Histogram , 1996, ISMM.