Breast cancer patient-derived whole-tumor cell culture model for efficient drug profiling and treatment response prediction

[1]  C. Perou,et al.  Breast cancer PAM50 signature: correlation and concordance between RNA-Seq and digital multiplexed gene expression technologies in a triple negative breast cancer series , 2019, BMC Genomics.

[2]  Jing Tang,et al.  Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer , 2019, bioRxiv.

[3]  J. Flowers,et al.  Origins and geographic diversification of African rice (Oryza glaberrima) , 2018, bioRxiv.

[4]  Hans Clevers,et al.  A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity , 2018, Cell.

[5]  P. Laurent-Puig,et al.  Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression , 2016, Genome Biology.

[6]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[7]  Andrew Menzies,et al.  Subclonal diversification of primary breast cancer revealed by multiregion sequencing , 2015, Nature Medicine.

[8]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[9]  Krister Wennerberg,et al.  Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies , 2014, Scientific Reports.

[10]  Krister Wennerberg,et al.  Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. , 2013, Cancer discovery.

[11]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[12]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[13]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[14]  Emmanuel Barillot,et al.  Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization , 2010, Bioinform..

[15]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[16]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[17]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[18]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Jun Lu,et al.  Pathway level analysis of gene expression using singular value decomposition , 2005, BMC Bioinformatics.

[20]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .