Strain induced change of bandgap and effective mass in silicon nanowires

This work computationally investigates the electromechanical properties of hydrogen passivated silicon nanowires under uniaxial tensile strain. It has been observed that bandgap changes can be as large as 60 and 100 meV per 1% axial strain for [100] and [110] nanowires, respectively. This rate of change in the bandgap is independent of nanowire size and depends only on the growth direction. More importantly, the nature of the bandgap can reversibly change from indirect to direct as a function of strain. It is also observed that for larger diameter nanowires, the indirect-to-direct transition occurs at smaller compressive strain.

[1]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[2]  M. Chou,et al.  Size and orientation dependence in the electronic properties of silicon nanowires , 2007 .

[3]  Yohei K. Sato,et al.  Enhanced direct interband transitions in silicon nanowires studied by electron energy-loss spectroscopy , 2007 .

[4]  Dimitris E. Ioannou,et al.  Silicon nanowire on oxide/nitride/oxide for memory application , 2007 .

[5]  K. Ishibashi,et al.  Direct observation of the deformation and the band gap change from an individual single-walled carbon nanotube under uniaxial strain. , 2007, Nano letters.

[6]  Paul W. Leu,et al.  Effect of growth orientation and surface roughness on electron transport in silicon nanowires , 2007 .

[7]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[8]  J. Michler,et al.  Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour–liquid–solid growth , 2007, Nanotechnology.

[9]  R. Rudd,et al.  First-principles study of the Young’s modulus of Si ⟨001⟩ nanowires , 2006, cond-mat/0611073.

[10]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[11]  A. Williamson,et al.  First principles simulations of the structural and electronic properties of silicon nanowires , 2006 .

[12]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[13]  Christophe Delerue,et al.  Electronic structure of semiconductor nanowires , 2006 .

[14]  Bahram Nabet,et al.  Enhanced Raman scattering from individual semiconductor nanocones and nanowires. , 2006, Physical review letters.

[15]  C. Hierold,et al.  Fabrication of single-walled carbon-nanotube-based pressure sensors. , 2006, Nano letters.

[16]  E. Vogel,et al.  Enhanced channel modulation in dual-gated silicon nanowire transistors. , 2005, Nano letters.

[17]  T. Kizuka,et al.  Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width , 2005 .

[18]  G. Klimeck,et al.  Electronic properties of silicon nanowires , 2005, IEEE Transactions on Electron Devices.

[19]  Madhu Menon,et al.  Nanomechanics of silicon nanowires , 2004 .

[20]  John Kouvetakis,et al.  Type-I Ge∕Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap , 2004 .

[21]  Shui-Tong Lee,et al.  Electronic structure and optical properties of silicon nanowires: A study using x-ray excited optical luminescence and x-ray emission spectroscopy , 2004 .

[22]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[23]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[24]  Yasuhiko Ishikawa,et al.  Strain-induced band gap shrinkage in Ge grown on Si substrate , 2003 .

[25]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[26]  J. Gilman,et al.  Nanotechnology , 2001 .

[27]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[28]  M. Anantram,et al.  Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain , 1998, cond-mat/9811263.

[29]  Fabio Beltram,et al.  Empirical spds^* tight-binding calculation for cubic semiconductors : general method and material parameters , 1998 .

[30]  Richard A. Soref,et al.  Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures , 1993 .

[31]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[32]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.