Overview of the BioCreative VI chemical-protein interaction Track
暂无分享,去创建一个
Anália Lourenço | Martin Krallinger | Obdulia Rabal | Julen Oyarzabal | Georgios Tsatsaronis | Astrid Lægreid | Ander Intxaurrondo | Alfonso Valencia | Saber A. Akhondi | Marius A. Doornenbal | Gael Pérez Rodríguez | Martín Pérez Pérez | Marius Doornenbal | Marleen Rodenburg | A. Poorna Chandrasekhar | Umesh Nandal | Jesus Santamaria | José Antonio Baso López | E. M. van Buel | A. Valencia | A. Lægreid | Martin Krallinger | A. Lourenço | O. Rabal | J. Oyarzábal | M. Pérez | U. Nandal | G. Tsatsaronis | A. Chandrasekhar | Ander Intxaurrondo | E. V. Buel | S. Akhondi | J. Santamaría | Marleen Rodenburg | José Antonio Baso López | Obdulia Rabal
[1] Alfonso Valencia,et al. The Markyt visualisation, prediction and benchmark platform for chemical and gene entity recognition at BioCreative/CHEMDNER challenge , 2016, Database J. Biol. Databases Curation.
[2] Joanna L. Sharman,et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands , 2015, Nucleic Acids Res..
[3] Feng Xu,et al. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information , 2015, Nucleic Acids Res..
[4] Thomas C. Rindflesch,et al. EDGAR: extraction of drugs, genes and relations from the biomedical literature. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.
[5] Zhiyong Lu,et al. The CHEMDNER corpus of chemicals and drugs and its annotation principles , 2015, Journal of Cheminformatics.
[6] Chitta Baral,et al. Pacific Symposium on Biocomputing 14:87-98 (2009) QUERYING PARSE TREE DATABASE OF MEDLINE TEXT TO SYNTHESIZE USER-SPECIFIC BIOMOLECULAR NETWORKS , 2022 .
[7] David S. Wishart,et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..
[8] Alfonso Valencia,et al. Evaluation of chemical and gene/protein entity recognition systems at BioCreative V.5: the CEMP and GPRO patents tracks , 2017 .
[9] Adrian J. Shepherd,et al. A text-mining system for extracting metabolic reactions from full-text articles , 2012, BMC Bioinformatics.
[10] Ubbo Visser,et al. BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput screening results , 2011, BMC Bioinformatics.
[11] Gael Pérez Rodríguez,et al. Overview of the CHEMDNER patents task , 2015 .
[12] Yifan Peng,et al. Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task , 2016, Database J. Biol. Databases Curation.
[13] A. Valencia,et al. Information Retrieval and Text Mining Technologies for Chemistry. , 2017, Chemical reviews.
[14] Robert B. Russell,et al. SuperTarget and Matador: resources for exploring drug-target relationships , 2007, Nucleic Acids Res..
[15] Martin Krallinger,et al. LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes , 2017, Nucleic Acids Res..
[16] L. Farrell. Relationships , 2002, BMJ : British Medical Journal.
[17] George Papadatos,et al. The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..
[18] Martin Krallinger,et al. 6.04 – Text Mining , 2014 .
[19] Dietrich Rebholz-Schuhmann,et al. EBIMed - text crunching to gather facts for proteins from Medline , 2007, Bioinform..
[20] Livia Perfetto,et al. SIGNOR: a database of causal relationships between biological entities , 2015, Nucleic Acids Res..