Clinical significance of cyclin D1, fibroblast growth factor receptor 3, and p53 immunohistochemistry in plasma cell myeloma treated with a thalidomide-based regimen.

[1]  J. Cook,et al.  Fibroblast Growth Factor Receptor 3 (FGFR3) Expression in Malignant Lymphomas , 2008, Applied immunohistochemistry & molecular morphology : AIMM.

[2]  D. Horsman,et al.  Lenalidomide Overcomes Poor Prognosis Conferred by del13q and t(4;14) but Not del17p13 in Multiple Myeloma: Results of the Canadian MM016 Trial. , 2007 .

[3]  Hong Chang,et al.  Aberrant nuclear p53 protein expression detected by immunohistochemistry is associated with hemizygous P53 deletion and poor survival for multiple myeloma , 2007, British journal of haematology.

[4]  M. Boccadoro,et al.  Review of thalidomide in the treatment of newly diagnosed multiple myeloma , 2007, Therapeutics and clinical risk management.

[5]  John Crowley,et al.  The molecular classification of multiple myeloma. , 2006, Blood.

[6]  R. Tubbs,et al.  Fluorescence in situ hybridization analysis of immunoglobulin heavy chain translocations in plasma cell myeloma using intact paraffin sections and simultaneous CD138 immunofluorescence. , 2006, The Journal of molecular diagnostics : JMD.

[7]  Shaji K. Kumar,et al.  Thalidomide and lenalidomide in the treatment of multiple myeloma. , 2006, European journal of cancer.

[8]  Gordan Srkalovic,et al.  Phase 2 study of pegylated liposomal doxorubicin, vincristine, decreased-frequency dexamethasone, and thalidomide in newly diagnosed and relapsed-refractory multiple myeloma. , 2006, Mayo Clinic proceedings.

[9]  R. Tubbs,et al.  Immunohistochemical analysis identifies two cyclin D1+ subsets of plasma cell myeloma, each associated with favorable survival. , 2006, American journal of clinical pathology.

[10]  R. Fonseca,et al.  Prognostic and therapeutic significance of myeloma genetics and gene expression profiling. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  P. L. Bergsagel,et al.  Molecular pathogenesis and a consequent classification of multiple myeloma. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  S. Trudel,et al.  Immunohistochemistry accurately predicts FGFR3 aberrant expression and t(4;14) in multiple myeloma. , 2005, Blood.

[13]  Bart Barlogie,et al.  Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. , 2005, Blood.

[14]  D. Reece,et al.  p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. , 2004, Blood.

[15]  Raju Tomer,et al.  Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. , 2004, Blood.

[16]  P. L. Bergsagel,et al.  Advances in biology of multiple myeloma: clinical applications. , 2004, Blood.

[17]  D. Reece,et al.  The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant , 2004, British journal of haematology.

[18]  Bart Barlogie,et al.  Genetics and Cytogenetics of Multiple Myeloma , 2004, Cancer Research.

[19]  R. Fonseca,et al.  The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. , 2003, Blood.

[20]  M. Baccarani,et al.  Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation. , 2003, Blood.

[21]  P. Bergsagel,et al.  Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma , 2003, Immunological reviews.

[22]  M. Rue,et al.  Clinical and biologic implications of recurrent genomic aberrations in myeloma. , 2003, Blood.

[23]  R. Bataille,et al.  Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. , 2002, Blood.

[24]  P. L. Bergsagel,et al.  Chromosome translocations in multiple myeloma , 2001, Oncogene.

[25]  M. Rocchi,et al.  Immunohistochemical analysis of cyclin D1 shows deregulated expression in multiple myeloma with the t(11;14). , 2000, The American journal of pathology.

[26]  R. Lamerz,et al.  Amplification of cyclin D1 gene in multiple myeloma: clinical and prognostic relevance , 2000, British journal of haematology.

[27]  M. Fiegl,et al.  Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. , 1998, Blood.

[28]  E. Schröck,et al.  Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3 , 1997, Nature Genetics.

[29]  L. Escoda,et al.  Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis , 2007, Leukemia.

[30]  P. L. Bergsagel,et al.  Early genetic events provide the basis for a clinical classification of multiple myeloma. , 2005, Hematology. American Society of Hematology. Education Program.

[31]  G. Pruneri,et al.  Cell cycle regulators in multiple myeloma: prognostic implications of p53 nuclear accumulation. , 2003, Human pathology.

[32]  H. Avet-Loiseau,et al.  Cyclin D1 expression in patients with multiple myeloma. , 2000, The hematology journal : the official journal of the European Haematology Association.