Investigation of factors affecting surrogate limb measurements in the testing of landmine protected vehicles

..................................................................................................... 1 ACKNOWLEDGEMENTS ................................................................................ 2 EXECUTIVE SUMMARY ................................................................................. 3 ABBREVIATIONS LIST ................................................................................... 6 LIST OF FIGURES ........................................................................................ 10 LIST OF TABLES .......................................................................................... 20

[1]  J M Mansour,et al.  An experimentally based nonlinear viscoelastic model of joint passive moment. , 1996, Journal of biomechanics.

[2]  Harold J. Mertz,et al.  Hybrid III: The First Human-Like Crash Test Dummy , 1994 .

[3]  Rainer Mattern,et al.  Injuries of the lower legs - foot, ankle joint, tibia; mechanisms, tolerance limits, injury - criteria evaluation of a recent biomechanic experiment series (impact tests with a pneumatic-biomechanic impactor) , 1995 .

[4]  J. Manseau,et al.  Development of an Assessment Methodology for Lower Leg Injuries Resulting from Anti-Vehicular Blast Landmines , 2005 .

[5]  Donald Russell,et al.  Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs , 1999 .

[6]  F. Goubel,et al.  Changes in mechanical properties of human plantar flexor muscles in ageing , 2004, Experimental Gerontology.

[7]  M. Latash Virtual trajectories, joint stiffness, and changes in the limb natural frequency during single-joint oscillatory movements , 1992, Neuroscience.

[8]  Donald Russell,et al.  Implementation of variable joint stiffness through antagonistic actuation using rolamite springs , 1999 .

[9]  Michael Günther,et al.  Joint stiffness of the ankle and the knee in running. , 2002, Journal of biomechanics.

[10]  R. Riener,et al.  Identification of passive elastic joint moments in the lower extremities. , 1999, Journal of biomechanics.

[11]  H. Kaufmann,et al.  SHOCK REDUCTION POWER OF DIFFERENT MATERIALS IN PLATE TARGETS , 2001 .

[12]  Jac Wismans,et al.  Occupant Safety: Mine Detonation under Vehicles - A Numerical Lower Leg Injury Assessment , 2006 .

[13]  Masayoshi Kubo,et al.  Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass. , 2003, Journal of biomechanics.

[14]  Rolf H. Eppinger,et al.  DYNAMIC AXIAL TOLERANCE OF THE HUMAN FOOT-ANKLE COMPLEX , 1996 .

[15]  Jeffrey Richard Crandall,et al.  MECHANISMS OF INJURY AND INJURY CRITERIA FOR THE HUMAN FOOT AND ANKLE IN DYNAMIC AXIAL IMPACTS TO THE FOOT , 1997 .

[16]  C. W. Gadd CRITERIA FOR INJURY POTENTIAL , 1961 .

[17]  Norman Jones,et al.  Vehicle Crash Mechanics , 2002 .

[18]  R. Lowne,et al.  DYNAMIC RESPONSE AND INJURY MECHANISM IN THE HUMAN FOOT AND ANKLE AND AN ANALYSIS OF DUMMY BIOFIDELITY , 1998 .

[19]  S. Lark,et al.  Joint torques and dynamic joint stiffness in elderly and young men during stepping down. , 2003, Clinical biomechanics.

[20]  R. H. J. Brown Strength of Biological Materials. Hiroshi Yamada , 1971 .

[21]  A. Su,et al.  Foot and ankle forces during an automobile collision: the influence of muscles. , 2004, Journal of biomechanics.

[22]  R. B. Davis,et al.  Gait characterization via dynamic joint stiffness , 1996 .

[23]  Gerald Keller,et al.  Statistics for Management and Economics , 1990 .

[24]  M. McHugh,et al.  Effect of knee flexion angle on active joint stiffness. , 2004, Acta physiologica Scandinavica.

[25]  Paul C. Begeman,et al.  Human ankle impact response in dorsiflexion , 1990 .

[26]  Rolf H. Eppinger,et al.  LOWER EXTREMITY INJURIES AND ASSOCIATED INJURY CRITERIA , 2001 .

[27]  Stephen D. Boyd Acceleration of a Plate Subject to Explosive Blast Loading - Trial Results , 2000 .