Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.

Geometrical confinement effect in exfoliated sheets of layered materials leads to significant evolution of energy dispersion in mono- to few-layer thickness regime. Molybdenum disulfide (MoS(2)) was recently found to exhibit indirect-to-direct gap transition when the thickness is reduced to a single monolayer. Emerging photoluminescence (PL) from monolayer MoS(2) opens up opportunities for a range of novel optoelectronic applications of the material. Here we report differential reflectance and PL spectra of mono- to few-layer WS(2) and WSe(2) that indicate that the band structure of these materials undergoes similar indirect-to-direct gap transition when thinned to a single monolayer. The transition is evidenced by distinctly enhanced PL peak centered at 630 and 750 nm in monolayer WS(2) and WSe(2), respectively. Few-layer flakes are found to exhibit comparatively strong indirect gap emission along with direct gap hot electron emission, suggesting high quality of synthetic crystals prepared by a chemical vapor transport method. Fine absorption and emission features and their thickness dependence suggest a strong effect of Se p-orbitals on the d electron band structure as well as interlayer coupling in WSe(2).

[1]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[2]  F. Consadori,et al.  Crystal Size Effects on the Exciton Absorption Spectrum of WSe 2 , 1970 .

[3]  R. B. Murray,et al.  The band structures of some transition metal dichalcogenides: band structures of the titanium dichalcogenides , 1972 .

[4]  J. Knights,et al.  Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination , 1972 .

[5]  R. B. Murray,et al.  The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials , 1972 .

[6]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[7]  F. Lévy,et al.  The low-energy absorption edge in 2H-MoS2 and 2H-MoSe2 , 1975 .

[8]  B. L. Evans,et al.  The Band Edge Excitons in 2HMoS2 , 1976 .

[9]  Yang,et al.  Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors. , 1993, Physical review letters.

[10]  M. Traving,et al.  Electronic structure of WSe 2 : A combined photoemission and inverse photoemission study , 1997 .

[11]  P. Blaha,et al.  Occupied and unoccupied electronic band structure of WSe 2 , 1997 .

[12]  P. Krüger,et al.  Atomic and electronic structure of WSe 2 from ab initio theory: Bulk crystal and thin film systems , 1999 .

[13]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[15]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[16]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[17]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[18]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[19]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[20]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[21]  J. Grossman,et al.  Semiconducting monolayer materials as a tunable platform for excitonic solar cells. , 2012, ACS nano.

[22]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[23]  A. Kis,et al.  Breakdown of high-performance monolayer MoS2 transistors. , 2012, ACS nano.

[24]  Aaron M. Jones,et al.  Electrical Tuning of Valley Magnetic Moment via Symmetry Control , 2012 .

[25]  B. K. Gupta,et al.  Artificially stacked atomic layers: toward new van der Waals solids. , 2012, Nano letters.

[26]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[27]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[28]  Gang Lu,et al.  Optical identification of single- and few-layer MoS₂ sheets. , 2012, Small.

[29]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[30]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[31]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[32]  Helmuth Berger,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[33]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[34]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[35]  Hong Jiang Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach , 2012 .

[36]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[37]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .

[38]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[39]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[40]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[41]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[42]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[43]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[44]  A. Neto,et al.  Two-dimensional crystals-based heterostructures: materials with tailored properties , 2012 .

[45]  Jed I. Ziegler,et al.  Electrical control of optical properties of monolayer MoS2 , 2012, 1211.0341.

[46]  Wang Yao,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[47]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[48]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.