A meshfree continuous–discontinuous approach for the ductile fracture modeling in explicit dynamics analysis

This paper presents a combined continuous–discontinuous modeling technique for the dynamic ductile fracture analysis using an interactive particle enrichment algorithm and a strain-morphed nonlocal meshfree method. The strain-morphed nonlocal meshfree method is a nodel-integrated meshfree method which was recently proposed for the analysis of elastic-damage induced strain localization problems. In this paper, the strain-morphed nonlocal meshfree formulation is extended to the elastic–plastic-damage materials for the ductile fracture analysis. When the ductile material is fully degraded, the interactive particle enrichment scheme is introduced in the strain-morphed nonlocal meshfree formulation that permits a continuous-to-discontinuous failure modeling. The essence of the interactive particle enrichment algorithm is a particle insertion–deletion scheme that produces a visibility criterion for the description of a traction-free crack and leads to a better presentation of the ductile fracture process. Several numerical benchmarks are examined using the explicit dynamics analysis to demonstrate the effectiveness and accuracy of the proposed method.

[1]  Francisco Armero,et al.  Numerical simulation of dynamic fracture using finite elements with embedded discontinuities , 2009 .

[2]  L. J. Sluys,et al.  From continuous to discontinuous failure in a gradient-enhanced continuum damage model , 2003 .

[3]  Shan Tang,et al.  Three-dimensional ductile fracture analysis with a hybrid multiresolution approach and microtomography , 2013 .

[4]  M. Koishi,et al.  Three‐dimensional meshfree‐enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites , 2012 .

[5]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[6]  Dongdong Wang,et al.  Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method , 2014 .

[7]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[8]  Sheng-Wei Chi,et al.  Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses , 2016 .

[9]  Milan Jirásek,et al.  Damage-plastic model for concrete failure , 2006 .

[10]  Amir R. Khoei,et al.  The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model , 2013 .

[11]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[12]  Dongdong Wang,et al.  An immersed particle modeling technique for the three-dimensional large strain simulation of particulate-reinforced metal-matrix composites , 2016 .

[13]  Antonio Rodríguez-Ferran,et al.  A new continuous-discontinuous damage model: cohesive cracks via an accurate energy-transfer process , 2014 .

[14]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[15]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[16]  Bo Ren,et al.  A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process , 2015 .

[17]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[18]  George Spanos,et al.  Multiscale ductile fracture integrating tomographic characterization and 3-D simulation , 2015 .

[19]  Marc G. D. Geers,et al.  A robust and consistent remeshing-transfer operator for ductile fracture simulations , 2006 .

[20]  Mark A Fleming,et al.  ENRICHED ELEMENT-FREE GALERKIN METHODS FOR CRACK TIP FIELDS , 1997 .

[21]  J. Ju,et al.  On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects , 1989 .

[22]  M. Duflot,et al.  A meshless method with enriched weight functions for fatigue crack growth , 2004 .

[23]  Ludovic Noels,et al.  Elastic damage to crack transition in a coupled non-local implicit discontinuous Galerkin/extrinsic cohesive law framework , 2014 .

[24]  M. Koishi,et al.  A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method , 2015 .

[25]  Shaofan Li,et al.  Meshfree simulations of thermo-mechanical ductile fracture , 2006 .

[26]  R. Hill Acceleration waves in solids , 1962 .

[27]  Shaofan Li,et al.  Meshfree simulations of spall fracture , 2011 .

[28]  J. Chaboche Continuum Damage Mechanics: Part I—General Concepts , 1988 .

[29]  A. Combescure,et al.  A thermodynamic method for the construction of a cohesive law from a nonlocal damage model , 2009 .

[30]  Shaofan Li,et al.  Modeling and simulation of large-scale ductile fracture in plates and shells , 2012 .

[31]  Mark A Fleming,et al.  Continuous meshless approximations for nonconvex bodies by diffraction and transparency , 1996 .

[32]  Ted Belytschko,et al.  Continuum Theory for Strain‐Softening , 1984 .

[33]  Haim Waisman,et al.  A spline‐based enrichment function for arbitrary inclusions in extended finite element method with applications to finite deformations , 2013 .

[34]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[35]  M. Koishi,et al.  A strain-morphed nonlocal meshfree method for the regularized particle simulation of elastic-damage induced strain localization problems , 2015 .

[36]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[37]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[38]  Zhuoya Li,et al.  A two-level strain smoothing regularized meshfree approach with stabilized conforming nodal integration for elastic damage analysis , 2013 .

[39]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[40]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[41]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[42]  Ted Belytschko,et al.  Regularization of material instabilities by meshfree approximations with intrinsic length scales , 2000 .

[43]  Harold S. Park,et al.  Nano Mechanics and Materials: Theory, Multiscale Methods and Applications , 2006 .

[44]  T. A. Cruse,et al.  BIE fracture mechanics analysis: 25 years of developments , 1996 .

[45]  Bo Cerup Simonsen,et al.  Mesh‐free simulation of ductile fracture , 2004 .

[46]  C. T. Wu,et al.  A generalized approximation for the meshfree analysis of solids , 2011 .

[47]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[48]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[49]  Ettore Barbieri,et al.  Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods , 2014 .

[50]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[51]  N. Chevaugeon,et al.  A level set based model for damage growth: The thick level set approach , 2011 .

[52]  Gilles Pijaudier-Cabot,et al.  From damage to fracture mechanics and conversely: A combined approach , 1996 .

[53]  Franck J. Vernerey,et al.  Multi-scale micromorphic theory for hierarchical materials , 2007 .

[54]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS , 1996 .

[55]  Jörg F. Unger,et al.  Multiscale Modeling of Concrete , 2011 .

[56]  Antonio Huerta,et al.  An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model , 2006 .

[57]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[58]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[59]  C. T. Wu,et al.  On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation , 2011 .

[60]  Jiun-Shyan Chen,et al.  An arbitrary order variationally consistent integration for Galerkin meshfree methods , 2013 .

[61]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[62]  A. Huespe,et al.  From continuum mechanics to fracture mechanics: the strong discontinuity approach , 2002 .

[63]  Ted Belytschko,et al.  Dynamic fracture with meshfree enriched XFEM , 2010 .

[64]  L. P. Bindeman,et al.  Assumed strain stabilization of the eight node hexahedral element , 1993 .

[65]  Mgd Marc Geers,et al.  Strain-based transient-gradient damage model for failure analyses , 1998 .

[66]  Wing Kam Liu,et al.  Numerical simulations of strain localization in inelastic solids using mesh‐free methods , 2000 .

[67]  R. King,et al.  Sliding contact stresses in a two-dimensional layered elastic half-space , 1987 .

[68]  F. X. C. Andrade,et al.  Continuous-discontinuous formulation for ductile fracture , 2011 .

[69]  Mgd Marc Geers,et al.  Localisation issues in local and nonlocal continuum approaches to fracture , 2002 .

[70]  M. Jirásek,et al.  Plastic model with non‐local damage applied to concrete , 2006 .

[71]  T. Belytschko,et al.  An implicit gradient model by a reproducing kernel strain regularization in strain localization problems , 2004 .

[72]  T. Belytschko,et al.  Localization limiters in transient problems , 1988 .

[73]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[74]  Dongdong Wang,et al.  A direct displacement smoothing meshfree particle formulation for impact failure modeling , 2016 .