The Higgs trilinear coupling and the scale of new physics

We consider modifications of the Higgs potential due to new physics at high energy scales. These upset delicate cancellations predicted by the Standard Model for processes involving Higgs bosons and longitudinal gauge bosons, and lead to a breakdown of the theory at high energies. We focus on modifications of the Higgs trilinear coupling and use the violation of tree-level unitarity as an estimate of the scale where the theory breaks down. We obtain a completely model-independent bound of < ˜ $$ \underset{\sim }{<} $$ 13 TeV for an order-1 modification of the trilinear. We argue that this bound can be saturated only in fine-tuned models, and the scale of new physics is likely to be much lower. The most stringent bounds are obtained from amplitudes involving multiparticle states that are not conventional scattering states. Our results show that a future determination of the Higgs cubic coupling can point to a well-defined scale of new physics that can be targeted and explored at future colliders.

[1]  A. Azatov,et al.  Superconformal technicolor. , 2011, Physical review letters.

[2]  Yuhsin Tsai,et al.  Phenomenology of induced electroweak symmetry breaking , 2014 .

[3]  Andreas Papaefstathiou,et al.  Triple Higgs boson production at a 100 TeV proton-proton collider , 2015, 1508.06524.

[4]  The Anthropic principle and the mass scale of the standard model , 1997, hep-ph/9707380.

[5]  R. Contino,et al.  Effective field theory analysis of double Higgs production via gluon fusion , 2015, 1502.00539.

[6]  F. Maltoni,et al.  Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation , 2018, Journal of High Energy Physics.

[7]  Marco Fedele,et al.  Constraints on the trilinear Higgs self coupling from precision observables , 2017, Journal of High Energy Physics.

[8]  C. Arzt Reduced effective lagrangians , 1993, hep-ph/9304230.

[9]  T. Corbett,et al.  Unitarity Constraints on Dimension-six Operators II: Including Fermionic Operators , 2017, 1705.09294.

[10]  H. Georgi,et al.  Chiral quarks and the non-relativistic quark model , 1984 .

[11]  M. A. Weber,et al.  Higgs physics at the CLIC electron–positron linear collider , 2016, The European Physical Journal C.

[12]  M. Chanowitz,et al.  The TeV physics of strongly interacting W's and Z's , 1985 .

[13]  Nicola De Filippis,et al.  Higgs Physics at the HL-LHC and HE-LHC , 2019, 1902.00134.

[14]  M. Luty Naive Dimensional Analysis and Supersymmetry , 1997, hep-ph/9706235.

[15]  Andreas Maier,et al.  Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction , 2017, 1702.07678.

[16]  A. Belyaev,et al.  Precise test of Higgs boson properties via triple Higgs boson production in vector boson fusion at future colliders , 2018, Physical Review D.

[17]  Martin Gorbahn,et al.  Indirect probes of the trilinear Higgs coupling: gg → h and h → γγ , 2016 .

[18]  C. Collaboration Combined measurements of Higgs boson couplings in proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\text {V} $$ , 2018, The European Physical Journal C.

[19]  T. Corbett,et al.  Unitarity constraints on dimension-six operators , 2014, 1411.5026.

[20]  Ulrich Haisch,et al.  Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders , 2018, Journal of High Energy Physics.

[21]  C. Englert,et al.  Higgs physics: It ain’t over till it is over , 2018, Physics Reports.

[22]  Hua Xing Zhu,et al.  Probing the quartic Higgs boson self-interaction , 2018, Physical Review D.

[23]  D. Wyler,et al.  Effective lagrangian analysis of new interactions and flavour conservation , 1986 .

[24]  I. Brivio,et al.  The standard model as an effective field theory , 2017, Physics Reports.

[25]  C. Grojean,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[26]  James D. Wells,et al.  How well do we need to measure the Higgs boson mass and self-coupling? , 2013, 1305.6397.

[27]  Riccardo Rattazzi,et al.  Which EFT , 2019, Journal of High Energy Physics.

[28]  F. Maltoni,et al.  Probing the scalar potential via double Higgs boson production at hadron colliders , 2018, Journal of High Energy Physics.

[29]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[30]  H. Thacker,et al.  Weak interactions at very high energies: The role of the Higgs-boson mass , 1977 .

[31]  F. Kling,et al.  Higgs boson pair production at future hadron colliders: From kinematics to dynamics , 2018, Physical Review D.

[32]  Michael Spannowsky,et al.  Maxi-sizing the trilinear Higgs self-coupling: how large could it be? , 2017, The European Physical Journal C.

[33]  Study of the double Higgs production channel H ( → bb̄ ) H ( → γγ ) with the ATLAS experiment at the HL-LHC The ATLAS Collaboration , 2017 .

[34]  M. McCullough An Indirect Model-Dependent Probe of the Higgs Self-Coupling , 2013, 1312.3322.

[35]  Higgs pair production at the High Luminosity LHC , 2015 .

[36]  A. Azatov,et al.  Superconformal technicolor: Models and phenomenology , 2011, 1106.4815.

[37]  F. Ferrari Extended N=1 super Yang-Mills theories , 2007, 0709.0472.

[38]  Counting 4π's in strongly coupled supersymmetry , 1997, hep-ph/9706275.

[39]  V. M. Ghete,et al.  Combined measurements of Higgs boson couplings in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{doc , 2018, The European Physical Journal. C, Particles and Fields.

[40]  Q. Yan,et al.  Probing triple-Higgs productions via $4b2\gamma$ decay channel at a 100 TeV hadron collider , 2015, 1510.04013.

[41]  Hoang Dai Nghia Nguyen,et al.  Review of combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton–proton collision data at s = 13 TeV collected with the ATLAS experiment , 2020, Modern Physics Letters A.

[42]  S. Y. Shim,et al.  Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector , 2016 .

[43]  C. Englert,et al.  Probing electroweak precision physics via boosted Higgs-strahlung at the LHC , 2018, Physical Review D.

[44]  M. Spannowsky,et al.  Higgsplosion: Solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons , 2017, 1704.03447.

[45]  V. M. Ghete,et al.  Combination of Searches for Higgs Boson Pair Production in Proton-Proton Collisions at sqrt[s]=13  TeV. , 2018, Physical review letters.

[46]  Hoang Dai Nghia Nguyen,et al.  Combination of searches for Higgs boson pairs in pp collisions at √{ s } = 13TeV with the ATLAS detector , 2019, 1906.02025.

[47]  M. Kado,et al.  Report from Working Group 2 , 2019 .

[48]  Fabio Maltoni,et al.  Probing the Higgs self coupling via single Higgs production at the LHC , 2016, 1607.04251.

[49]  V. Khoze,et al.  Upper limit on the scale of new physics phenomena from rising cross sections in high multiplicity Higgs and vector boson events , 2014, 1411.5633.

[50]  B. Henning,et al.  Measuring Higgs Couplings without Higgs Bosons. , 2019, Physical review letters.

[51]  A. Monin Inconsistencies of higgsplosion. , 2018, 1808.05810.

[52]  Riccardo Rattazzi,et al.  Patterns of strong coupling for LHC searches , 2016, Journal of High Energy Physics.

[53]  D. Dicus,et al.  Upper bounds on the values of masses in unified gauge theories , 1973 .

[54]  Erika Garutti,et al.  Measuring the Higgs Self-coupling at the International Linear Collider , 2016 .

[55]  C. Grojean,et al.  First-order electroweak phase transition in the standard model with a low cutoff , 2005 .

[56]  B. Henning,et al.  Higgs Couplings without the Higgs , 2018 .

[57]  P. Henrard,et al.  First evidence for the two-body charmless baryonic decay $ {B^0}\to p\overline{p} $ , 2013, 1308.0961.

[58]  J. A. Dror,et al.  Strong tW scattering at the LHC , 2016, Journal of High Energy Physics.

[59]  H. Thacker,et al.  Strength of weak interactions at very high energies and the Higgs boson mass , 1977 .

[60]  H. Georgi,et al.  Flavor conserving CP violation in invisible axion models , 1986 .

[61]  R. Contino,et al.  Effective field theory analysis of double Higgs boson production via gluon fusion , 2015 .

[62]  Howard Georgi,et al.  On-shell effective field theory☆☆☆ , 1991 .

[63]  Yuhsin Tsai,et al.  Induced electroweak symmetry breaking and supersymmetric naturalness , 2013, 1306.6354.

[64]  B. Grinstein,et al.  Higgs-Higgs bound state due to new physics at a TeV , 2007, 0704.1505.

[65]  A. Belyaev,et al.  Multiple Higgs and vector boson production beyond the Standard Model , 2012, 1212.3860.