Transfer learning to detect neonatal seizure from electroencephalography signals

[1]  G. Lightbody,et al.  A comparison of quantitative EEG features for neonatal seizure detection , 2008, Clinical Neurophysiology.

[2]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[3]  Paul B. Colditz,et al.  A computer-aided detection of EEG seizures in infants: a singular-spectrum approach and performance comparison , 2002, IEEE Transactions on Biomedical Engineering.

[4]  Mostefa Mesbah,et al.  Time-frequency based newborn EEG seizure detection using low and high frequency signatures. , 2004, Physiological measurement.

[5]  William P. Marnane,et al.  Neonatal Seizure Detection Using Atomic Decomposition With a Novel Dictionary , 2014, IEEE Transactions on Biomedical Engineering.

[6]  Özkan Inik,et al.  Derin Öğrenme ve Görüntü Analizinde Kullanılan Derin Öğrenme Modelleri , 2017 .

[7]  T. Inder,et al.  Seizure detection algorithm for neonates based on wave-sequence analysis , 2006, Clinical Neurophysiology.

[8]  Joseph Picone,et al.  Automatic Analysis of EEGs Using Big Data and Hybrid Deep Learning Architectures , 2017, Front. Hum. Neurosci..

[9]  G. Lightbody,et al.  EEG-based neonatal seizure detection with Support Vector Machines , 2011, Clinical Neurophysiology.

[10]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Joseph Picone,et al.  Optimizing channel selection for seizure detection , 2017, 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).

[12]  Ihsan Ullah,et al.  An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach , 2018, Expert Syst. Appl..

[13]  Chen-Yi Lee,et al.  Convolutional neural networks for classification of music-listening EEG: comparing 1D convolutional kernels with 2D kernels and cerebral laterality of musical influence , 2019, Neural Computing and Applications.

[14]  Joseph Picone,et al.  Deep Architectures for Automated Seizure Detection in Scalp EEGs , 2017, ArXiv.

[15]  Abdullah Caliskan,et al.  Prediction of Leakage from an Axial Piston Pump Slipper with Circular Dimples Using Deep Neural Networks , 2020 .

[16]  Seda Arslan Tuncer,et al.  Incorporating feature selection methods into a machine learning-based neonatal seizure diagnosis. , 2019, Medical hypotheses.

[17]  U. Rajendra Acharya,et al.  Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals , 2017, Comput. Biol. Medicine.

[18]  L. Nagarajan,et al.  Inter-rater reliability of amplitude-integrated EEG for the detection of neonatal seizures. , 2020, Early human development.

[19]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[20]  E. Dempsey,et al.  A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial , 2020, The Lancet. Child & adolescent health.

[21]  G B Boylan,et al.  Gaussian mixture models for classification of neonatal seizures using EEG , 2010, Physiological measurement.

[22]  Sampsa Vanhatalo,et al.  Time-Varying EEG Correlations Improve Automated Neonatal Seizure Detection , 2019, Int. J. Neural Syst..

[23]  Chao Yang,et al.  A Survey on Deep Transfer Learning , 2018, ICANN.

[24]  Joseph Picone,et al.  Gated recurrent networks for seizure detection , 2017, 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).

[25]  Michel J. A. M. van Putten,et al.  Deep learning for detection of focal epileptiform discharges from scalp EEG recordings , 2018, Clinical Neurophysiology.

[26]  Misko Subotic,et al.  Whispered speech recognition using deep denoising autoencoder , 2017, Eng. Appl. Artif. Intell..

[27]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[28]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  S. Huffel,et al.  Automated neonatal seizure detection mimicking a human observer reading EEG , 2008, Clinical Neurophysiology.

[30]  Amplitude-integrated electroencephalography compared with conventional video-electroencephalography for detection of neonatal seizures , 2020 .

[31]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[32]  Sabine Van Huffel,et al.  Neonatal Seizure Detection Using Deep Convolutional Neural Networks , 2019, Int. J. Neural Syst..

[33]  Joelle Pineau,et al.  Learning Robust Features using Deep Learning for Automatic Seizure Detection , 2016, MLHC.

[34]  William P. Marnane,et al.  Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel , 2017, Comput. Biol. Medicine.

[35]  N. J. Stevenson,et al.  Descriptor : A dataset of neonatal EEG recordings with seizure annotations , 2019 .

[36]  Jianzhong Wu,et al.  Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images , 2016, IEEE Transactions on Medical Imaging.

[37]  Gordon Lightbody,et al.  Neonatal seizure detection from raw multi-channel EEG using a fully convolutional architecture , 2019, Neural Networks.

[38]  Hasan Badem,et al.  A Deep Neural Network Classifier for Decoding Human Brain Activity Based on Magnetoencephalography , 2017 .

[39]  J. Gotman,et al.  Automatic seizure detection in the newborn: methods and initial evaluation. , 1997, Electroencephalography and clinical neurophysiology.

[40]  A. Liu,et al.  Detection of neonatal seizures through computerized EEG analysis. , 1992, Electroencephalography and clinical neurophysiology.

[41]  Eli M. Mizrahi,et al.  Characterization and classification of neonatal seizures , 1987, Neurology.

[42]  Fenglong Ma,et al.  A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning , 2018, 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI).

[43]  Geraldine B. Boylan,et al.  Neonatal seizure detection using convolutional neural networks , 2017, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP).

[44]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).