A model of local adaptation

The visual system constantly adapts to different luminance levels when viewing natural scenes. The state of visual adaptation is the key parameter in many visual models. While the time-course of such adaptation is well understood, there is little known about the spatial pooling that drives the adaptation signal. In this work we propose a new empirical model of local adaptation, that predicts how the adaptation signal is integrated in the retina. The model is based on psychophysical measurements on a high dynamic range (HDR) display. We employ a novel approach to model discovery, in which the experimental stimuli are optimized to find the most predictive model. The model can be used to predict the steady state of adaptation, but also conservative estimates of the visibility (detection) thresholds in complex images. We demonstrate the utility of the model in several applications, such as perceptual error bounds for physically based rendering, determining the backlight resolution for HDR displays, measuring the maximum visible dynamic range in natural scenes, simulation of afterimages, and gaze-dependent tone mapping.

[1]  Tobias Ritschel,et al.  A Computational Model of Afterimages , 2012, Comput. Graph. Forum.

[2]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[3]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, ACM Trans. Graph..

[4]  Min H. Kim,et al.  Modeling human color perception under extended luminance levels , 2009, ACM Trans. Graph..

[5]  D. J. Bradley Night Vision: Basic, Clinical and Applied Aspects , 1991 .

[6]  Kareem M. Ahmad,et al.  Cell density ratios in a foveal patch in macaque retina , 2003, Visual Neuroscience.

[7]  G. Westheimer Spatial interaction in human cone vision , 1967, The Journal of physiology.

[8]  Steve Marschner,et al.  Perceptually based tone mapping of high dynamic range image streams , 2005, EGSR '05.

[9]  H R Wilson,et al.  A neural model of foveal light adaptation and afterimage formation , 1997, Visual Neuroscience.

[10]  Kenneth Chiu,et al.  Spatially Nonuniform Scaling Functions for High Contrast Images , 1993 .

[11]  Parry Moon,et al.  THE VISUAL EFFECT OF NON-UNIFORM SURROUNDS: , 1945 .

[12]  Donald P. Greenberg,et al.  A model of visual masking for computer graphics , 1997, SIGGRAPH.

[13]  Gary W. Meyer,et al.  A perceptually based adaptive sampling algorithm , 1998, SIGGRAPH.

[14]  F. Rieke,et al.  Single-Photon Absorptions Evoke Synaptic Depression in the Retina to Extend the Operational Range of Rod Vision , 2008, Neuron.

[15]  Hans-Peter Seidel,et al.  Visual maladaptation in contrast domain , 2010, Electronic Imaging.

[16]  Arthur Lugtigheid,et al.  Perception of 3D structure and natural scene statistics: The Southampton-York Natural Scenes (SYNS) dataset. , 2015, Journal of vision.

[17]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997 .

[18]  Christophe Schlick,et al.  Quantization Techniques for Visualization of High Dynamic Range Pictures , 1995 .

[19]  W. Stiles,et al.  The Luminous Efficiency of Rays Entering the Eye Pupil at Different Points , 1933 .

[20]  Donald P. Greenberg,et al.  A perceptually based physical error metric for realistic image synthesis , 1999, SIGGRAPH.

[21]  F. Heitger,et al.  The functional role of contrast adaptation , 1988, Vision Research.

[22]  Mark D. Fairchild,et al.  iCAM06: A refined image appearance model for HDR image rendering , 2007, J. Vis. Commun. Image Represent..

[23]  F. Rieke,et al.  Light adaptation in cone vision involves switching between receptor and post-receptor sites , 2007, Nature.

[24]  Greg Ward,et al.  A Contrast-Based Scalefactor for Luminance Display , 1994, Graphics Gems.

[25]  Mark D. Fairchild,et al.  The HDR Photographic Survey , 2007, CIC.

[26]  Donald P. Greenberg,et al.  Time-dependent visual adaptation for fast realistic image display , 2000, SIGGRAPH.

[27]  Sarah R. Allred,et al.  Lightness perception in high dynamic range images: local and remote luminance effects. , 2012, Journal of vision.

[28]  Donald C. Hood,et al.  Sites of sensitivity control within a long-wavelength cone pathway , 1990, Vision Research.

[29]  Marc Levoy,et al.  Simulating the Visual Experience of Very Bright and Very Dark Scenes , 2015, ACM Trans. Graph..

[30]  Jessica K. Hodgins,et al.  Two methods for display of high contrast images , 1999, TOGS.

[31]  Luís Paulo Santos,et al.  A local model of eye adaptation for high dynamic range images , 2004, AFRIGRAPH '04.

[32]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[33]  K. J. Craik The effect of adaptation on differential brightness discrimination , 1938, The Journal of physiology.

[34]  W N Charman,et al.  A simple parametric model of the human ocular modulation transfer function , 1991, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[35]  Franck Patrick Vidal,et al.  Tuning of Patient-Specific Deformable Models Using an Adaptive Evolutionary Optimization Strategy , 2012, IEEE Transactions on Biomedical Engineering.

[36]  Francisco J. Serón,et al.  Perception-Based Rendering: Eyes Wide Bleached , 2005, Eurographics.

[37]  Michael H. Brill,et al.  Color appearance models , 1998 .

[38]  W. Geisler Adaptation, afterimages and cone saturation , 1978, Vision Research.

[39]  S P McKee,et al.  Specificity of cone mechanisms in lateral interaction , 1970, The Journal of physiology.

[40]  Hans van Hateren A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells. , 2005, Journal of vision.

[41]  H. Spekreijse,et al.  An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation , 1993, Vision Research.

[42]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.

[43]  Sarah R. Allred,et al.  The Dynamic Range of Human Lightness Perception , 2011, Current Biology.

[44]  J. H. van Hateren,et al.  Encoding of high dynamic range video with a model of human cones , 2006, TOGS.

[45]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[46]  R. Hunt The Reproduction of Colour in Photography, Printing and Television , 1988 .

[47]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[48]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[49]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[50]  Erik Reinhard,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Dynamic Range Reduction Inspired by Photoreceptor Physiology , 2022 .

[51]  Erik Reinhard,et al.  Photographic tone reproduction for digital images , 2002, ACM Trans. Graph..

[52]  H. Barlow Dark and Light Adaptation: Psychophysics , 1972 .

[53]  Alessandro Rizzi,et al.  Camera and visual veiling glare in HDR images , 2007 .

[54]  Radoslaw Mantiuk,et al.  Gaze-Dependent Tone Mapping , 2013, ICIAR.

[55]  Frédo Durand,et al.  Interactive Tone Mapping , 2000, Rendering Techniques.

[56]  D. Hood,et al.  Psychophysical tests of models of the response function , 1979, Vision Research.

[57]  J. M. Valeton Photoreceptor light adaptation models: An evaluation , 1983, Vision Research.

[58]  Wolfgang Heidrich,et al.  High dynamic range display systems , 2004, ACM Trans. Graph..