A modified Latin hypercube sampling based on prior information

[1]  Lijun Yang,et al.  Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oil-filled power transformers , 2011 .

[2]  Bertrand Iooss,et al.  Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties , 2013, J. Simulation.

[3]  Ping-Feng Pai,et al.  Improving project-profit prediction using a two-stage forecasting system , 2013, Comput. Ind. Eng..

[4]  A. Raftery,et al.  Bayesian Information Criterion for Censored Survival Models , 2000, Biometrics.

[5]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[6]  Chunlei Yang,et al.  Salient object detection in complex scenes via D-S evidence theory based region classification , 2017, The Visual Computer.

[7]  Iftekhar A. Karimi,et al.  Design of computer experiments: A review , 2017, Comput. Chem. Eng..

[8]  Mahdi Aziz,et al.  An adaptive memetic Particle Swarm Optimization algorithm for finding large-scale Latin hypercube designs , 2014, Eng. Appl. Artif. Intell..

[9]  Ozgur Kisi,et al.  Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree , 2018 .

[10]  V. Roshan Joseph,et al.  Space-filling designs for computer experiments: A review , 2016 .

[11]  Johan A. K. Suykens,et al.  Optimal control by least squares support vector machines , 2001, Neural Networks.

[12]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[13]  Budiman Minasny,et al.  A conditioned Latin hypercube method for sampling in the presence of ancillary information , 2006, Comput. Geosci..

[14]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[15]  Xueguang Shao,et al.  A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. , 2007, Talanta.

[16]  Zaibin Jiao,et al.  A D-S evidence theory-based relay protection system hidden failures detection method in smart grid , 2018, 2017 IEEE Power & Energy Society General Meeting.