Rank reduction and volume minimization approach to state-space subspace system identification
暂无分享,去创建一个
[1] Petre Stoica,et al. Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions , 1996, IEEE Trans. Signal Process..
[2] Berkant Savas,et al. Dimensionality reduction and volume minimization - generalization of the determinant minimization criterion for reduced rank regression problems , 2006 .
[3] Bart De Moor,et al. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..
[4] Adi Ben-Israel. A volume associated with m x n matrices , 1992 .
[5] Berkant Savas,et al. The maximum likelihood estimate in reduced-rank regression , 2005, Numer. Linear Algebra Appl..
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[8] Mats Viberg,et al. Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..
[9] Bo Wahlberg,et al. A linear regression approach to state-space subspace system identification , 1996, Signal Process..
[10] Gene H. Golub,et al. Numerical methods for computing angles between linear subspaces , 1971, Milestones in Matrix Computation.
[11] Gene H. Golub,et al. Matrix computations , 1983 .