Estimation of P(Y < X) for Weibull Distribution Under Progressive Type-II Censoring

Based on progressively Type II censored samples, we consider the estimation of R = P(Y < X) when X and Y are two independent Weibull distributions with different shape parameters, but having the same scale parameter. The maximum likelihood estimator, approximate maximum likelihood estimator, and Bayes estimator of R are obtained. Based on the asymptotic distribution of R, the confidence interval of R are obtained. Two bootstrap confidence intervals are also proposed. Analysis of a real data set is given for illustrative purposes. Monte Carlo simulations are also performed to compare the different proposed methods.

[1]  Shuo-Jye Wu ESTIMATIONS OF THE PARAMETERS OF THE WEIBULL DISTRIBUTION WITH PROGRESSIVELY CENSORED DATA , 2002 .

[2]  H. Okasha ESTIMATION OF P(Y < X) FOR GENERALIZED LOGISTIC DISTRIBUTION , 2011 .

[3]  Debasis Kundu,et al.  Bayesian Inference and Life Testing Plan for the Weibull Distribution in Presence of Progressive Censoring , 2008, Technometrics.

[4]  Debasis Kundu,et al.  Analysis of Type-II progressively hybrid censored data , 2006, Comput. Stat. Data Anal..

[5]  P. Hall Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .

[6]  Debasis Kundu,et al.  Estimation of R = P ( Y < X ) for three-parameter Weibull distribution , 2009 .

[7]  Debasis Kundu,et al.  Estimation of P[Y < X] for generalized exponential distribution , 2005 .

[8]  Debasis Kundu,et al.  On estimation of R=P(Y, 2012 .

[9]  E. Cramer Balakrishnan, Narayanaswamy ; Aggarwala, Rita: Progressive censoring : theory, methods, and applications / N. Balakrishnan ; Rita Aggarwala. - Boston ; Basel ; Berlin, 2000 , 2000 .

[10]  D. Kundu,et al.  Estimation of P(Y < X) for the Three-Parameter Generalized Exponential Distribution , 2008 .

[11]  S. James Press,et al.  The Subjectivity of Scientists and the Bayesian Approach: Press/The Subjectivity , 2001 .

[12]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[13]  Ramesh C. Gupta,et al.  Estimation of pr (a’x>>b’y) in the mnltiyariate normal case , 1990 .

[14]  D. Kundu,et al.  Estimation of R=P(Y, 2009 .

[15]  Z. F. Jaheen,et al.  Empirical Bayes estimation of P(Y < X) and characterizations of Burr-type X model , 1997 .

[16]  Nancy R. Mann,et al.  Best Linear Invariant Estimation for Weibull Parameters Under Progressive Censoring , 1971 .

[17]  Narayanaswamy Balakrishnan,et al.  A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .

[18]  Mohammad Z. Raqab,et al.  Stress-strength reliability of Weibull distribution based on progressively censored samples , 2011 .

[19]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[20]  Debasis Kundu,et al.  Comparison of Different Estimators of P [Y < X] for a Scaled Burr Type X Distribution , 2005 .

[21]  Ayman Baklizi Likelihood and Bayesian estimation of I using lower record values from the generalized exponential distribution , 2008, Comput. Stat. Data Anal..

[22]  Marvin H. J. Gruber The Subjectivity of Scientists and the Bayesian Approach , 2002, Technometrics.

[23]  Debasis Kundu,et al.  Hybrid censoring schemes with exponential failure distribution , 1998 .

[24]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[25]  Sadegh Rezaei,et al.  Estimation of P[Y, 2010 .

[26]  Debasis Kundu,et al.  Estimation of P[Y, 2006, IEEE Transactions on Reliability.

[27]  Narayanaswamy Balakrishnan,et al.  Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .

[28]  Adnan M. Awad,et al.  Some inference results on pr(x < y) in the bivariate exponential model , 1981 .