Reconstruction of depth-EEG signals: A spatiotemporal model to simulate realistic epileptic activities

The aim of this work is to interpret the signals recorded by depth-EEG electrodes in epileptic patients. In particular we focused on understanding the relationship that links between recorded SEEG signals and the underlying epileptic neural populations. For this purpose, we used an extended spatiotemporal source model and solved the forward problem to calculate the contribution of the source activity on each contact of the inserted electrodes. As a result we could infer from different configurations of the sources the effect of some parameters on the collected signals. The results of our study show that relying on realistic simulations can help to better understand electrophysiological signals collected in patients with epilepsy.

[1]  Harald Köstler,et al.  Numerical Mathematics of the Subtraction Method for the Modeling of a Current Dipole in EEG Source Reconstruction Using Finite Element Head Models , 2007, SIAM J. Sci. Comput..

[2]  Fabrizio Esposito,et al.  Realistic and Spherical Head Modeling for EEG Forward Problem Solution: A Comparative Cortex-Based Analysis , 2010, Comput. Intell. Neurosci..

[3]  J. Bellanger,et al.  Interictal to Ictal Transition in Human Temporal Lobe Epilepsy: Insights From a Computational Model of Intracerebral EEG , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[4]  Fabrice Wendling,et al.  The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy , 2008, NeuroImage.

[5]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[6]  F. Wendling,et al.  Recording of fast activity at the onset of partial seizures: Depth EEG vs. scalp EEG , 2012, NeuroImage.

[7]  J. Bellanger,et al.  Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG , 2001, Clinical Neurophysiology.

[8]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[9]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.