A Review on Vision-Based Pedestrian Detection for Intelligent Vehicles

Vision-based pedestrian detection techniques for smart vehicles have emerged as a hot research topic in the field of vehicular electronics and driving safety. A vision-based system can recognize pedestrians in front of the moving vehicle, then warns the driver of the dangerous situation loudly or slows the vehicle down automatically to protect both drivers and pedestrians. In general, the vision-based pedestrian detection process can be divided into three consecutive steps: pedestrian detection, pedestrian recognition, and pedestrian tracking. In this paper, a great variety of methods associated with these three steps is introduced and compared in detail. In addition, the implementation of vision-based pedestrian detection on vehicles is also presented. In the end, we analyze the difficulties and the research trend in the future.

[1]  Ulrich Ramacher,et al.  A 100-GOPS programmable processor for vehicle vision systems , 2003, IEEE Design & Test of Computers.

[2]  A. Dupret,et al.  On chip vision system architecture using a CMOS retina , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[3]  B. Steux,et al.  Hardware-friendly pedestrian detection and impact prediction , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[4]  S. Gorzig,et al.  Real time vision for intelligent vehicles , 2001 .

[5]  R. Chapuis,et al.  Shape-based pedestrian detection and localization , 2003, Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems.

[6]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  B.K.P. Horn,et al.  Application of the discrete Haar wavelet transform to image fusion for nighttime driving , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[8]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[10]  Christian Wöhler,et al.  An adaptable time-delay neural-network algorithm for image sequence analysis , 1999, IEEE Trans. Neural Networks.

[11]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[12]  P. Prasanna,et al.  Probabilistic signal interpretation methods for a thermopile pedestrian detection system , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[13]  A. Broggi,et al.  Infrared stereo vision-based pedestrian detection , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[14]  Sridhar Lakshmanan,et al.  A motion and shape-based pedestrian detection algorithm , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[15]  A. Broggi,et al.  Pedestrian localization and tracking system with Kalman filtering , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[16]  S. Heinrich,et al.  Fast obstacle detection for urban traffic situations , 2002, IEEE Trans. Intell. Transp. Syst..

[17]  Shigeru Okuma,et al.  Active frame subtraction for pedestrian detection from images of moving camera , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[18]  Kazumi Fujimoto,et al.  A study on pedestrian detection technology using stereo images , 2002 .

[19]  Thomas Kalinke,et al.  An image processing system for driver assistance , 2000, Image Vis. Comput..

[20]  Tomaso A. Poggio,et al.  Trainable pedestrian detection , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[21]  Osama Masoud A ROBUST REAL-TIME MULTI-LEVEL MODEL-BASED PEDESTRIAN TRACKING SYSTEM , 1997 .

[22]  Tomonori Hashiyama,et al.  Pedestrian detection using a CCD camera and gyrosensor on a vehicle , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[23]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[24]  Massimo Bertozzi,et al.  Vision-based pedestrian detection: will ants help? , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[25]  Ulrich Kressel,et al.  Pedestrian recognition by classification of image sequences - global approaches vs. local spatio-temporal processing , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[26]  Osama Masoud,et al.  Robust pedestrian tracking using a model-based approach , 1997, Proceedings of Conference on Intelligent Transportation Systems.

[27]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  D.M. Gavrila,et al.  Vision-based pedestrian detection: the PROTECTOR system , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[29]  Dariu Gavrila,et al.  Sensor-Based Pedestrian Protection , 2001, IEEE Intell. Syst..

[30]  Dariu Gavrila,et al.  Pedestrian Detection from a Moving Vehicle , 2000, ECCV.

[31]  B. Zavidovique,et al.  A context-dependent vision system for pedestrian detection , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[32]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Massimo Bertozzi,et al.  Shape-based pedestrian detection , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[34]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[35]  M. Dorigo,et al.  The Ant Colony Optimization MetaHeuristic 1 , 1999 .

[36]  Marchal Philippe SAVE-U : An innovative sensor platform for Vulnerable Road User protection , 2003 .

[37]  Shuang You,et al.  Fast pedestrian detection from a moving vehicle , 2006 .

[38]  Larry S. Davis,et al.  Pedestrian tracking from a moving vehicle , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[39]  Li-Chen Fu,et al.  Vision based obstacle warning system for on-road driving , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[40]  U. Lages,et al.  A multi-sensor approach for the protection of vulnerable traffic participants the PROTECTOR project , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[41]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[42]  A. Shashua,et al.  Pedestrian detection for driving assistance systems: single-frame classification and system level performance , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[43]  Jan Giebel,et al.  Shape-based pedestrian detection and tracking , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[44]  Thomas Kalinke,et al.  Walking pedestrian recognition , 2000, IEEE Trans. Intell. Transp. Syst..

[45]  Uwe Franke,et al.  Fast stereo based object detection for stop&go traffic , 1996, Proceedings of Conference on Intelligent Vehicles.

[46]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[47]  Liang Zhao,et al.  Stereo- and neural network-based pedestrian detection , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[48]  S. Heinrich Fast obstacle detection using flow/depth constraint , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[49]  Liang Zhao,et al.  Stereo- and neural network-based pedestrian detection , 2000, IEEE Trans. Intell. Transp. Syst..

[50]  Edward H. Adelson,et al.  Analyzing and recognizing walking figures in XYT , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Hideo Mori,et al.  A method for discriminating of pedestrian based on rhythm , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).