Rabbit cingulate cortex: Cytoarchitecture, physiological border with visual cortex, and afferent cortical connections of visual, motor, postsubicular, and intracingulate origin

The connections of cingulate cortex with visual, motor, and parahippocampal cortices in the rabbit brain are evaluated by using a modified Brodmann cytoarchitectural scheme, electrophysiological mapping techniques, and the pathway tracers horseradish peroxidase (HRP) and tritiated amino acids. Rabbit cingulate cortex can be divided into areas 25, 24, and 29. Area 29 isof particular interest because area 29d has a lateral extension with a granular layer IV, area 29b has a caudal extension in which the connections differ from anterior area 29b, and there is a prominent area 29e. delineation of the lateral border of area 29d with area 17 closely approximates the medial edge of the visual field representation in area 17 as determined electrophysiologically.

[1]  D. L. Stewart,et al.  Receptive field characteristics of striate cortical neurons in the rabbit. , 1971, Brain research.

[2]  Michael W. Miller,et al.  Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices , 1983, The Journal of comparative neurology.

[3]  J. E. Rose,et al.  Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat , 1948, The Journal of comparative neurology.

[4]  J. Parnavelas,et al.  Distribution and morphology of functionally identified neurons in the visual cortex of the rat , 1983, Brain Research.

[5]  V. Montero Comparative Studies on the Visual Cortex , 1981 .

[6]  V. Montero,et al.  Retinotopic organization of striate and peristriate visual cortex in the albino rat. , 1973, Brain research.

[7]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[8]  Alan Peters,et al.  Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat , 1981, The Journal of comparative neurology.

[9]  H. Swadlow,et al.  Efferent systems of the rabbit visual cortex: Laminar distribution of the cells of origin, axonal conduction velocities, and identification of axonal branches , 1981, The Journal of comparative neurology.

[10]  H. Holländer,et al.  Topography of retinal representation in the rabbit cortex: An experimental study using transneuronal and retrograde tracing techniques , 1980, The Journal of comparative neurology.

[11]  V. Caviness Architectonic map of neocortex of the normal mouse , 1975, The Journal of comparative neurology.

[12]  D L Rosene,et al.  Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. , 1979, Science.

[13]  O. Vinogradova Functional Organization of the Limbic System in the Process of Registration of Information: Facts and Hypotheses , 1975 .

[14]  T. Berger,et al.  Associational connections between the anterior and postetior cingulate gyrus in rabbit , 1982, Brain Research.

[15]  J. M. Petras,et al.  Connections of the parietal lobe. , 1971, Journal of psychiatric research.

[16]  M. Mesulam,et al.  Cortical afferent input to the principals region of the rhesus monkey , 1985, Neuroscience.

[17]  J. O'leary,et al.  Structure of the area striata of the cat , 1941 .

[18]  L. Malis,et al.  Geniculo‐striate connections in the rabbit. II. Cytoarchitectonic structure of the striate region and of the dorsal lateral geniculate body; organization of the geniculo‐striate projections , 1965, The Journal of comparative neurology.

[19]  N. Berman,et al.  The rabbit and the cat: A comparison of some features of response properties of single cells in the primary visual cortex , 1979, The Journal of comparative neurology.

[20]  F Mauguiere,et al.  The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. , 1980, Brain : a journal of neurology.

[21]  A. Hendrickson,et al.  The autoradiographic demonstration of axonal connections in the central nervous system. , 1972, Brain research.

[22]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[23]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[24]  R. Giolli,et al.  Corticocortical fiber connections of the rabbit visual cortex: A fiber degeneration study , 1977, The Journal of comparative neurology.

[25]  S. Espinoza,et al.  Retinotopic organization of striate and extrastriate visual cortex in the hooded rat , 1983, Brain Research.

[26]  S. A. Talbot,et al.  Visual areas I and II of cerebral cortex of rabbit. , 1950, Federation proceedings.

[27]  D. Pandya,et al.  Cortico‐cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey , 1978, The Journal of comparative neurology.

[28]  L. Towns,et al.  Projections of the dorsal lateral geniculate and lateral posterior nuclei to visual cortex in the rabbit , 1982, The Journal of comparative neurology.

[29]  M. Segal Flow of conditioned responses in limbic telencephalic system of the rat. , 1973, Journal of neurophysiology.

[30]  P. Goldman-Rakic,et al.  Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey , 1984, Neuroscience.

[31]  M Segal,et al.  Convergence of sensory input on units in the hippocampal system of the rat. , 1974, Journal of comparative and physiological psychology.

[32]  H. Künzle An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. , 1978, Brain, behavior and evolution.

[33]  W. Krieg Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas , 1946 .

[34]  E. Vastola Electrical signs of an oligosynaptic visual projection to the rat hippocampus. , 1982, Brain, behavior and evolution.

[35]  B. Vogt,et al.  Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29 , 1981, The Journal of comparative neurology.