Shattering-Extremal Set Systems of VC Dimension at most 2

We say that a set system $\mathcal{F}\subseteq 2^{[n]}$ shatters a given set $S\subseteq [n]$ if $2^S=\{F~\cap~S ~:~F~\in~\mathcal{F}\}$. The Sauer inequality states that in general, a set system $\mathcal{F}$ shatters at least $|\mathcal{F}|$ sets. Here we concentrate on the case of equality. A set system is called shattering-extremal if it shatters exactly $|\mathcal{F}|$ sets. In this paper we characterize shattering-extremal set systems of Vapnik-Chervonenkis dimension $2$ in terms of their inclusion graphs, and as a corollary we answer an open question about leaving out elements from shattering-extremal set systems in the case of families of Vapnik-Chervonenkis dimension $2$.

[1]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[2]  L. Rónyai,et al.  Shattering-Extremal Set Systems of Small VC-Dimension , 2012, 1211.0732.

[3]  Béla Bollobás,et al.  Defect Sauer Results , 1995, J. Comb. Theory A.

[4]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[5]  Lajos Rónyai,et al.  S-extremal set systems and Gröbner bases , 2010 .

[6]  Lajos Rónyai,et al.  Some Combinatorial Applications of Gröbner Bases , 2011, CAI.

[7]  David Newnham Shattering news. , 2016, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[8]  G. Greco,et al.  Embeddings and the Trace of Finite Sets , 1998, Inf. Process. Lett..

[9]  P. Frankl Extremal set systems , 1996 .

[10]  Béla Bollobás,et al.  Reverse Kleitman Inequalities , 1989 .

[11]  Shay Moran,et al.  Shattering, Graph Orientations, and Connectivity , 2012, Electron. J. Comb..