Full-Field Micromechanics of Precipitated Shape Memory Alloys

A full-field micromechanics approach is developed to predict the effective thermomechanical response of precipitation-hardened near-equiatomic Ni-rich NiTi alloys on the basis of composition and heat treatment. The microscale-informed model takes into account the structural effects of the precipitates (precipitate volume fraction, elastic properties, and coherency stresses due to the lattice mismatch between the precipitates and the matrix) on the reversible martensitic transformation under load as well as the chemical effects resulting from the Ni depletion of the matrix during precipitate growth. The post-aging thermomechanical response is predicted based on finite element simulations on representative microstructures, using the response of the solutionized material and time–temperature–martensitic transformation temperature maps. The predictions are compared with experiments for materials of different initial compositions and heat treatments and reasonably good agreement is demonstrated. The proposed methodology can be in principle extended to predict the post-aging thermomechanical response of other shape memory alloy systems as well.

[1]  S. Lejeunes,et al.  Une Toolbox Abaqus pour le calcul de propriétés effectives de milieux hétérogènes , 2011 .

[2]  Yanju Liu,et al.  Shape-memory polymers and their composites: Stimulus methods and applications , 2011 .

[3]  C. M. Wayman,et al.  Electron microscopy studies of the martensitic transformation in an aged Ti-51at%Ni shape memory alloy , 1988 .

[4]  A. V. Kulkarni,et al.  Transformation behaviour and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion , 2005 .

[5]  Christian Huet,et al.  Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies , 1999 .

[6]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[7]  Tarak Ben Zineb,et al.  Micromechanical analysis of precipitate effects on shape memory alloys behaviour , 2008 .

[8]  G. Kang,et al.  Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation , 2014 .

[9]  Alessandro Reali,et al.  A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings , 2010 .

[10]  H. Sehitoglu,et al.  Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals , 2008 .

[11]  H. Maier,et al.  Shape memory and pseudoelastic behavior of 51.5%Ni-Ti single crystals in solutionized and overaged state , 2001 .

[12]  H. Maier,et al.  Strain–temperature behavior of NiTiCu shape memory single crystals , 2001 .

[13]  M. Elahinia,et al.  Manufacturing and processing of NiTi implants: A review , 2012 .

[14]  W. Zaki,et al.  A constitutive model for shape memory alloys accounting for thermomechanical coupling , 2011 .

[15]  James H. Mabe,et al.  Shape Memory Alloy Based Morphing Aerostructures , 2010 .

[16]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  Yves Bellouard,et al.  Shape memory alloys for microsystems: A review from a material research perspective , 2008 .

[18]  P. Anderson,et al.  Coupling between martensitic phase transformations and plasticity: A microstructure-based finite element model , 2010 .

[19]  Yunzhi Wang,et al.  Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni , 2010 .

[20]  Neil Morgan,et al.  Medical shape memory alloy applications—the market and its products , 2004 .

[21]  Gunther Eggeler,et al.  On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys , 2010 .

[22]  D. Ratna,et al.  Recent advances in shape memory polymers and composites: a review , 2008 .

[23]  Steven M. Tuominen,et al.  High temperature shape memory alloys , 2010 .

[24]  G. Eggeler,et al.  Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining , 2008 .

[25]  Othmane Benafan,et al.  Shape memory alloy actuator design: CASMART collaborative best practices and case studies , 2013, International Journal of Mechanics and Materials in Design.

[26]  F. Auricchio,et al.  Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation , 2014 .

[27]  B. Franco Engineering the Martensitic Transformation Hysteresis of Ni-Rich NiTi Alloys , 2014 .

[28]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[29]  W. Zaki,et al.  A review of constitutive models and modeling techniques for shape memory alloys , 2016 .

[30]  Jan Van Humbeeck,et al.  Non-medical applications of shape memory alloys , 1999 .

[31]  C. M. Wayman,et al.  Further electron microscopy studies of the Ti11 Ni14 phase in an aged Ti52at%Ni shape memory alloy , 1986 .

[32]  Tarak Ben Zineb,et al.  Simulation of the effect of elastic precipitates in SMA materials based on a micromechanical model , 2012 .

[33]  Gangbing Song,et al.  Applications of shape memory alloys in civil structures , 2006 .

[34]  Haluk E. Karaca,et al.  Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output , 2009 .

[35]  Shuguang Li,et al.  Unit cells for micromechanical analyses of particle-reinforced composites , 2004 .

[36]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[37]  H. Morawiec,et al.  Effect of ageing on martensitic transformation in NiTi shape memory alloy , 1988 .

[38]  S. Stupp,et al.  Porous NiTi for bone implants: a review. , 2008, Acta biomaterialia.

[39]  Dimitris C. Lagoudas,et al.  Review and perspectives: shape memory alloy composite systems , 2015, Acta Mechanica.

[40]  R. Kainuma,et al.  Coherency of ordered γ′ precipitates and thermoelastic martensitic transformation in FeNiCoAlTaB alloys , 2015 .

[41]  W. Windl,et al.  Elastic anisotropy of Ni4Ti3 from first principles , 2009 .

[42]  J. van Humbeeck,et al.  High Temperature Shape Memory Alloys Problems and Prospects , 2006 .

[43]  Guozheng Kang,et al.  A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys , 2013 .

[44]  D. Schryvers,et al.  Measuring strain fields and concentration gradients around Ni4Ti3 precipitates , 2006 .

[45]  L. G. Machado,et al.  Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys , 2012 .

[46]  S. Nenno,et al.  Crystal structure and morphology of the metastable X phase in shape memory Ti-Ni alloys , 1986 .

[47]  Dimitris C. Lagoudas,et al.  A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite , 2007 .

[48]  Ken Gall,et al.  Cyclic deformation behavior of single crystal NiTi , 2001 .

[49]  A. Heckmann,et al.  Structural and functional fatigue of NiTi shape memory alloys , 2004 .

[50]  B. J. McCoy,et al.  Temperature effects on the transition from nucleation and growth to Ostwald ripening , 2004 .

[51]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[52]  Ayman M. Okeil,et al.  Overview of Potential and Existing Applications of Shape Memory Alloys in Bridges , 2011 .

[53]  Rolf Gotthardt,et al.  Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations , 1998 .

[54]  Weijia Tang,et al.  Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys , 1997 .

[55]  Dimitris C. Lagoudas,et al.  Material Characterization of SMA Actuators Under Nonproportional Thermomechanical Loading , 1999 .

[56]  Ken Gall,et al.  Compressive response of NiTi single crystals , 2000, Acta Materialia.

[57]  M. Ashby,et al.  Designing hybrid materials , 2003 .

[58]  Huseyin Sehitoglu,et al.  Stress dependence of the hysteresis in single crystal NiTi alloys , 2004 .

[59]  Y. Bansal,et al.  Micromechanics of spatially uniform heterogeneous media: A critical review and emerging approaches , 2009 .

[60]  Dimitris C. Lagoudas,et al.  Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys , 2014 .

[61]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[62]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[63]  Dimitris C. Lagoudas,et al.  Aerospace applications of shape memory alloys , 2007 .

[64]  Y. Liu,et al.  Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys , 2009 .

[65]  G. Eggeler,et al.  The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys , 2002 .

[66]  Erhard Hornbogen,et al.  The effect of variables on martensitic transformation temperatures , 1985 .

[67]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[68]  S. Hurlebaus,et al.  Seismic Response Control Using Shape Memory Alloys: A Review , 2011 .

[69]  E. Cesari,et al.  Ferromagnetic shape memory alloys: Alternatives to Ni–Mn–Ga , 2008 .

[70]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[71]  Haluk E. Karaca,et al.  Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy , 2013 .

[72]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[73]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[74]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.