Regional patterns of cerebral cortical differentiation determined by diffusion tensor MRI.

The morphology of axonal and dendritic arbors in the immature cerebral cortex influences the degree of anisotropy in water diffusion. This enables cortical maturation to be monitored by the noninvasive technique of diffusion tensor magnetic resonance imaging (DTI). Herein, we utilized DTI of postmortem ferret brain to quantify regional and temporal patterns in cortical maturation. We found that diffusion anisotropy within the isocortex decreases over the first month of life, coinciding closely in time with expansion of axonal and dendritic cellular processes of pyramidal neurons. Regional patterns consist of differences between allocortex and isocortex, a regional anisotropy gradient that closely parallels the transverse neurogenetic gradient, and differences between primary and nonprimary isocortical areas. By combining the temporal and regional factors, the isocortical developmental gradient magnitude corresponds to a 5-day difference in maturity between relatively developed rostral/caudal isocortex at the gradient source and less mature isocortex at the occipital pole. Additionally, the developmental trajectory of primary areas precedes nonprimary areas by 2.7 days. These quantitative estimates coincide with previous histological studies of ferret development. Similarities in cerebral cortical diffusion anisotropy observed between ferret and other species suggest the framework developed here is of general potential relevance.

[1]  F. Lazeyras,et al.  Mapping the early cortical folding process in the preterm newborn brain. , 2008, Cerebral cortex.

[2]  Susumu Mori,et al.  Quantitative Cortical Mapping of Fractional Anisotropy in Developing Rat Brains , 2008, The Journal of Neuroscience.

[3]  D. V. van Essen,et al.  Microstructural Changes of the Baboon Cerebral Cortex during Gestational Development Reflected in Magnetic Resonance Imaging Diffusion Anisotropy , 2007, The Journal of Neuroscience.

[4]  Stephan E Maier,et al.  Developmental changes and injury induced disruption of the radial organization of the cortex in the immature rat brain revealed by in vivo diffusion tensor MRI. , 2007, Cerebral cortex.

[5]  Alex J. de Crespigny,et al.  The effects of brain tissue decomposition on diffusion tensor imaging and tractography , 2007, NeuroImage.

[6]  Alex J. de Crespigny,et al.  An approach to high resolution diffusion tensor imaging in fixed primate brain , 2007, NeuroImage.

[7]  Leif Østergaard,et al.  Modeling dendrite density from magnetic resonance diffusion measurements , 2007, NeuroImage.

[8]  Grace Tiao,et al.  Insights into the gyrification of developing ferret brain by magnetic resonance imaging , 2007, Journal of anatomy.

[9]  I. Nelken,et al.  Physiological and Anatomical Evidence for Multisensory Interactions in Auditory Cortex , 2006, Cerebral cortex.

[10]  G Larry Bretthorst,et al.  Modeling water diffusion anisotropy within fixed newborn primate brain using Bayesian probability theory , 2006, Magnetic resonance in medicine.

[11]  I. Nelken,et al.  Functional organization of ferret auditory cortex. , 2005, Cerebral cortex.

[12]  Hua Jin,et al.  Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: Diffusion tensor imaging versus cortical gyration , 2005, NeuroImage.

[13]  Bob Jacobs,et al.  Regional Dendritic Variation in Neonatal Human Cortex: A Quantitative Golgi Study , 2005, Developmental Neuroscience.

[14]  T Tarui,et al.  Overexpression of p27 Kip 1, probability of cell cycle exit, and laminar destination of neocortical neurons. , 2005, Cerebral cortex.

[15]  Christopher D. Kroenke,et al.  Diffusion MR imaging characteristics of the developing primate brain , 2005, NeuroImage.

[16]  G. Egan,et al.  The Pattern of Cerebral Injury in a Primate Model of Preterm Birth and Neonatal Intensive Care , 2004, Journal of neuropathology and experimental neurology.

[17]  Roland G. Henry,et al.  Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants , 2004, NeuroImage.

[18]  Roland G. Henry,et al.  Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns , 2004, NeuroImage.

[19]  Giorgio M Innocenti,et al.  Visual areas in the lateral temporal cortex of the ferret (Mustela putorius). , 2004, Cerebral cortex.

[20]  M. Meredith,et al.  Multiple sensory afferents to ferret pseudosylvian sulcal cortex , 2004, Neuroreport.

[21]  G. Paxinos,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[22]  M. Marín‐padilla Dual origin of the mammalian neocortex and evolution of the cortical plate , 1978, Anatomy and Embryology.

[23]  K. Zilles Architecture of the Human Cerebral Cortex , 2004 .

[24]  K. Zilles CHAPTER 27 – Architecture of the Human Cerebral Cortex: Regional and Laminar Organization , 2004 .

[25]  Sheng-Kwei Song,et al.  Relative indices of water diffusion anisotropy are equivalent in live and formalin‐fixed mouse brains , 2003, Magnetic resonance in medicine.

[26]  T Tarui,et al.  Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. , 2003, Cerebral cortex.

[27]  A. Connelly,et al.  Anisotropic noise propagation in diffusion tensor MRI sampling schemes , 2003, Magnetic resonance in medicine.

[28]  J. Helpern,et al.  Diffusion tensor imaging in fixed brain tissue at 7.0 T , 2003, NMR in biomedicine.

[29]  Giorgio M Innocenti,et al.  Areal organization of the posterior parietal cortex of the ferret (Mustela putorius). , 2002, Cerebral cortex.

[30]  A. Snyder,et al.  Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. , 2002, Cerebral cortex.

[31]  Milos Judas,et al.  Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. , 2002, Cerebral cortex.

[32]  Henry Kennedy,et al.  Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. , 2002, Cerebral cortex.

[33]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[34]  M. Solaiyappan,et al.  Diffusion tensor imaging of the developing mouse brain , 2001, Magnetic resonance in medicine.

[35]  V. Caviness,et al.  Sequence of Neuron Origin and Neocortical Laminar Fate: Relation to Cell Cycle of Origin in the Developing Murine Cerebral Wall , 1999, The Journal of Neuroscience.

[36]  S. Walkley,et al.  Ferret pyramidal cell dendritogenesis: Changes in morphology and ganglioside expression during cortical development , 1999, The Journal of comparative neurology.

[37]  Naoum P. Issa,et al.  The Critical Period for Ocular Dominance Plasticity in the Ferret’s Visual Cortex , 1999, The Journal of Neuroscience.

[38]  A. Snyder,et al.  Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. , 1998, Radiology.

[39]  S. Maier,et al.  Microstructural Development of Human Newborn Cerebral White Matter Assessed in Vivo by Diffusion Tensor Magnetic Resonance Imaging , 1998, Pediatric Research.

[40]  A. McQuarrie,et al.  Regression and Time Series Model Selection , 1998 .

[41]  S. Juliano,et al.  Organization of the forepaw representation in ferret somatosensory cortex. , 1998, Somatosensory & motor research.

[42]  S. Juliano,et al.  Histogenesis of ferret somatosensory cortex , 1997, The Journal of comparative neurology.

[43]  P. Huttenlocher,et al.  Regional differences in synaptogenesis in human cerebral cortex , 1997, The Journal of comparative neurology.

[44]  Francisco Clascá,et al.  Insular cortex and neighboring fields in the cat: A redefinition based on cortical microarchitecture and connections with the thalamus , 1997, The Journal of comparative neurology.

[45]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[46]  P. Rakić,et al.  Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: Comparison with the neocortex , 1995, The Journal of comparative neurology.

[47]  P. Rakic A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution , 1995, Trends in Neurosciences.

[48]  T. Voigt,et al.  Synaptophysin immunohistochemistry reveals inside‐out pattern of early synaptogenesis in ferret cerebral cortex , 1993, The Journal of comparative neurology.

[49]  R. Dykes,et al.  Cytoarchitecture of the ferret suprasylvian gyrus correlated with areas containing multiunit responses elicited by stimulation of the face. , 1993, Somatosensory & motor research.

[50]  R. Dykes,et al.  Electrophysiological examination of the representation of the face in the suprasylvian gyrus of the ferret: a correlative study with cytoarchitecture. , 1993, Somatosensory & motor research.

[51]  M. Marín‐Padilla,et al.  Neocortical Development , 1992, Journal of Cognitive Neuroscience.

[52]  T. L. Hickey,et al.  Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  P. Goldman-Rakic,et al.  Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. , 1986, Science.

[54]  I. Smart,et al.  Cell production gradients in the developing ferret isocortex. , 1986, Journal of anatomy.

[55]  E. Irle,et al.  Cortical projections originating from the cat's insular area and remarks on claustrocortical connections , 1986, The Journal of comparative neurology.

[56]  C. Shatz,et al.  Neurogenesis of the cat's primary visual cortex , 1985, The Journal of comparative neurology.

[57]  B. Lockard The forebrain of the ferret. , 1985, Laboratory animal science.

[58]  G. M. McSherry Mapping of cortical histogenesis in the ferret. , 1984, Journal of embryology and experimental morphology.

[59]  I. Smart,et al.  Three dimensional growth of the mouse isocortex. , 1983, Journal of anatomy.

[60]  Stanley Fahn,et al.  Comparative Correlative Neuroanatomy of the Vertebrate Telencephalon , 1983, Neurology.

[61]  J. Moossy Histology and Histopathology of the Nervous System , 1982 .

[62]  E. Crosby,et al.  Comparative Correlative Neuroanatomy of the Vertebrate Telencephalon , 1982 .

[63]  Webb Haymaker,et al.  Histology and Histopathology of the Nervous System , 1982 .

[64]  D. Kerr,et al.  Olfactory bulb connections with basal rhinencephalon in the ferret: An evoked potential and neuroanatomical study , 1975, The Journal of comparative neurology.

[65]  P. Rakić Mode of cell migration to the superficial layers of fetal monkey neocortex , 1972, The Journal of comparative neurology.

[66]  P. L. Williams,et al.  Postvaccinial Perivenous Encephalitis , 1960, Neurology.

[67]  J. L. Conel The Postnatal Development of the Human Cerebral Cortex. Volume V. The Cortex of the Fifteen-Month Infant , 1956 .