Dynamic characteristics and control of magnetorheological/electrorheological sandwich structures: A state-of-the-art review

During past four decades, applications of magnetorheological and electrorheological fluids in adaptive sandwich structures have been widely studied, primarily for the purpose of vibration control. The rapid response time of controllable magnetorheological/electrorheological fluids to an applied magnetic/electric field and reversible variations in their stiffness and damping properties have been the key motivations for adaptive structures applications. This article presents a comprehensive review of the reported studies on applications of magnetorheological/electrorheological fluids for realizing active and semi-active vibration suppression in sandwich structures. The review focuses on methods of characterizing the magnetorheological/electrorheological fluids in the pre-yield region, magnetic/electric field-dependent phenomenological models describing the storage and loss moduli of fluids, experimental and analytical methods developed for vibration analysis of sandwich structures with magnetorheological/electrorheological fluid treatments, analysis of structures with partial magnetorheological/electrorheological fluid treatments and optimal treatment locations, and developments in control strategies for vibration suppression of magnetorheological/electrorheological sandwich structures. The studies on dynamic responses of fully and partially treated magnetorheological/electrorheological-based sandwich beams, plates, shells, and panels are also discussed, including the mathematical modeling methods and associated assumptions, methods of solutions, and experimental methods.

[1]  S. Rakheja,et al.  The effect of magneto-rheological fluid on vibration suppression capability of adaptive sandwich plates: Experimental and finite element analysis , 2015 .

[2]  Christopher D. Rahn,et al.  Modeling and Control of an Electrorheological Sandwich Beam , 1998 .

[3]  P. J. Achorn,et al.  A study of the dynamic behavior of an electrorheological fluid , 1991 .

[4]  L. Pahlavan,et al.  Transient Response of Sandwich Beams with Electrorheological Core , 2009 .

[5]  S. Joshi VIBRATION STUDY OF MAGNETORHEOLOGICAL FLUID FILLED SANDWICH BEAMS , 2012 .

[6]  Xinglong Gong,et al.  Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer , 2012 .

[7]  Colin H. Hansen,et al.  Active Vibration Control of a Magnetorheological Sandwich Beam , 2005 .

[8]  Seyyed M. Hasheminejad,et al.  FLUTTER SUPPRESSION OF AN ELASTICALLY SUPPORTED PLATE WITH ELECTRO-RHEOLOGICAL FLUID CORE UNDER YAWED SUPERSONIC FLOWS , 2013 .

[9]  Norman M. Wereley,et al.  A nonlinear viscoelastic - plastic model for electrorheological fluids , 1997 .

[10]  Quan Wang,et al.  Magnetorheological elastomer-based smart sandwich beams with nonconductive skins , 2005 .

[11]  Kosuke Nagaya,et al.  Vibration suppression of plate using linear MR fluid passive damper , 2004 .

[13]  P. Bishay,et al.  Finite Element and Spectral Element Models of an Adaptive Magnetorheological Sandwich Beam , 2010 .

[14]  J. Rezaeepazhand,et al.  Aeroelastic stability of smart sandwich plates with electrorheological fluid core and orthotropic faces , 2013 .

[15]  Lim Mong King,et al.  Vibration Characteristics of Sandwich Beams Partially and Fully Treated with Electro-Rheological Fluid , 1997 .

[16]  M. Kciuk,et al.  Properties and application of magnetorheological fluids , 2006 .

[17]  Ramin Sedaghati,et al.  Dynamic mechanical properties of an electrorheological fluid under large-amplitude oscillatory shear strain , 2012 .

[18]  S. Rakheja,et al.  Optimum design of a multilayer beam partially treated with magnetorheological fluid , 2010 .

[19]  Mehdi Eshaghi,et al.  On the effects of coupling between in-plane and out-of-plane vibrating modes of smart functionally graded circular/annular plates , 2012 .

[20]  Hans Conrad,et al.  Quasistatic measurements on a magnetorheological fluid , 1996 .

[21]  M. Eshaghi,et al.  Closed-form solution for free vibration of piezoelectric coupled annular plates using Levinson plate theory , 2010 .

[22]  Seung-Bok Choi,et al.  Elastodynamic characteristics of hollow cantilever beams containing an electrorheological fluid - Experimental results , 1994 .

[23]  Santosha K. Dwivedy,et al.  Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam , 2009 .

[25]  S. Genç,et al.  Rheological properties of magnetorheological fluids , 2002 .

[26]  Seung-Bok Choi,et al.  Passive and active damping characteristics of smart electro-rheological composite beams , 2001 .

[27]  Daniel J. Inman,et al.  Some design considerations for active and passive constrained layer damping treatments , 1996 .

[28]  L. C. Davis,et al.  RHEOLOGY OF MAGNETORHEOLOGICAL FLUIDS: MODELS AND MEASUREMENTS , 1996 .

[29]  D. J. Mead,et al.  Loss factors and resonant frequencies of encastré damped sandwich beams , 1970 .

[30]  Kartik Venkatraman,et al.  Vibration control of sandwich beams using electro-rheological fluids , 2003 .

[31]  S. Rakheja,et al.  An accurate technique for pre-yield characterization of MR fluids , 2015 .

[32]  Subhash Rakheja,et al.  Optimal vibration control of beams with total and partial MR-fluid treatments , 2011 .

[33]  D. J. Mead,et al.  The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions , 1969 .

[34]  Brian R. Mace,et al.  A tunable magneto-rheological fluid-filled beam-like vibration absorber , 2010 .

[35]  Gong Haiqing,et al.  Influence of a Locally Applied Electro-Rheological Fluid Layer on Vibration of a Simple Cantilever Beam , 1993 .

[36]  J. Rezaeepazhand,et al.  Dynamic stability of smart sandwich beams with electro-rheological core resting on elastic foundation , 2013 .

[37]  R. Sedaghati,et al.  Vibration analysis and design optimization of sandwich cylindrical panels fully and partially treated with electrorheological fluid materials , 2012 .

[38]  Zhenbang Xu,et al.  An Active-damping-compensated Magnetorheological Elastomer Adaptive Tuned Vibration Absorber , 2010 .

[39]  Jia-Yi Yeh Vibration analyses of the annular plate with electrorheological fluid damping treatment , 2007 .

[40]  Quan Wang,et al.  Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams , 2006 .

[41]  L. Pahlavan,et al.  TRANSIENT RESPONSE OF A THREE LAYER SANDWICH PLATE WITH ELECTRORHEOLOGICAL CORE AND ORTHOTROPIC FACES , 2008 .

[42]  Huaxia Deng,et al.  Adaptive Tuned Vibration Absorber based on Magnetorheological Elastomer , 2007 .

[43]  Seyyed M. Hasheminejad,et al.  SUPERSONIC FLUTTER CONTROL OF AN ELECTRORHEOLOGICAL FLUID-BASED SMART CIRCULAR CYLINDRICAL SHELL , 2014 .

[44]  Weihua Li,et al.  Adaptive tuned dynamic vibration absorbers working with MR elastomers , 2009 .

[45]  John Matthew Ginder,et al.  Magnetorheological elastomers in tunable vibration absorbers , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[46]  J. Claracq,et al.  Viscoelastic properties of magnetorheological fluids , 2004 .

[47]  Kexiang Wei,et al.  Vibration control of variable speed/acceleration rotating beams using smart materials , 2006 .

[48]  B. Sapiński,et al.  VIBRATION CONTROL CAPABILITIES OF A CANTILEVER BEAM WITH A MAGNETORHEOLOGICAL FLUID , 2008 .

[49]  Jia-Yi Yeh Vibration and damping analysis of orthotropic cylindrical shells with electrorheological core layer , 2011 .

[50]  Weihua Li,et al.  Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields , 2011 .

[51]  Quan Wang,et al.  Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part I: Magnetoelastic loads in conductive skins , 2006 .

[52]  Jiun-Shyan Chen,et al.  Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles , 2006 .

[53]  Jia-Yi Yeh Vibration control of a sandwich annular plate with an electrorheological fluid core layer , 2007 .

[54]  Yan-Shin Shih,et al.  Critical load, dynamic characteristics and parametric instability of electrorheological material-based adaptive beams , 2005 .

[55]  Jia-Yi Yeh,et al.  Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment , 2013 .

[56]  Subhash Rakheja,et al.  Vibration analysis of a multi-layer beam containing magnetorheological fluid , 2009 .

[57]  M. Mahjoob,et al.  Structural modeling, vibration analysis and optimal viscoelastic layer characterization of adaptive sandwich beams with electrorheological fluid core , 2013 .

[58]  Weihua Li,et al.  Research and Applications of MR Elastomers , 2008 .

[59]  S. M. Hasheminejad,et al.  Free vibration and forced harmonic response of an electrorheological fluid-filled sandwich plate , 2009 .

[60]  C. D. Berg,et al.  Composite Structure Analysis of a Hollow Cantilever Beam Filled with Electro-Rheological Fluid , 1996 .

[61]  Melek Yalcintas,et al.  Magnetorheological and electrorheological materials in adaptive structures and their performance comparison , 1999 .

[62]  Dynamic stability analysis of a rectangular orthotropic sandwich plate with an electrorheological fluid core , 2006 .

[63]  Rassoul Tabassian,et al.  Stability of smart sandwich beams with cross-ply faces and electrorheological core subjected to axial loads , 2012 .

[64]  S. K. Dwivedy,et al.  Multi-frequency excitation of magnetorheological elastomer-based sandwich beam with conductive skins , 2012 .

[65]  William A. Bullough,et al.  On the Phenomenological Modeling of Electrorheological and Magnetorheological Fluid Preyield Behavior , 2005 .

[66]  Mohammad J. Mahjoob,et al.  An experimental evaluation of pre-yield and post-yield rheological models of magnetic field dependent smart materials , 2010 .

[67]  Seung-Bok Choi,et al.  Active Vibration Control of a Cantilevered Beam Containing an Electro-Rheological Fluid , 1994 .

[68]  P. B. Kosasih,et al.  LINEAR VISCOELASTICITY OF MR FLUIDS: DEPENDENCE ON MAGNETIC FIELDS , 2005 .

[69]  B. Govindarajan,et al.  Finite Element Vibration Analysis of a Magnetorheological Fluid Sandwich Beam , 2013 .

[70]  Santosha K. Dwivedy,et al.  Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions , 2011 .

[71]  Lei Chena Distributed Magnetorheological ( MR ) Fluid Damper for Active Structural Vibration Control , 2006 .

[72]  Quan Wang,et al.  Finite element studies on field-dependent rigidities of sandwich beams with magnetorheological elastomer cores , 2006 .

[73]  H. Conrad,et al.  Vibration Characteristics of a Composite Beam Containing an Electrorheological Fluid , 1990 .

[74]  G. Zhou,et al.  Dynamic behavior of a magnetorheological elastomer under uniaxial deformation: I. Experiment , 2003 .

[75]  M. Mahjoob,et al.  Effects of electrorheological fluid core and functionally graded layers on the vibration behavior of a rotating composite beam , 2012 .

[76]  Arkady S. Voloshin,et al.  Electrorheological adaptive structures with embedded sensing and control , 1994, Smart Structures.

[77]  Seung-Bok Choi,et al.  Active Vibration Control of Intelligent Composite Laminate Structures Incorporating an Electro-Rheological Fluid , 1996 .

[78]  John P. Coulter,et al.  An Analytical and Experimental Investigation of Electrorheological Material Based Adaptive Beam Structures , 1995 .

[79]  Yi-Qing Ni,et al.  Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass , 2009 .

[81]  Robert M. Parkin,et al.  Vibration characteristics of MR cantilever sandwich beams: experimental study , 2009 .

[82]  Seung-Bok Choi,et al.  AN ELECTRORHEOLOGICAL FLUID-BASED PLATE FOR NOISE REDUCTION IN A CABIN: EXPERIMENTAL RESULTS , 2001 .

[83]  Lien-Wen Chen,et al.  Finite element dynamic analysis of orthotropic sandwich plates with an electrorheological fluid core layer , 2007 .

[84]  Seung-Bok Choi,et al.  A New Generation of Innovative Ultra-Advanced Intelligent Composite Materials Featuring Electro-Rheological Fluids: An Experimental Investigation , 1989 .

[85]  J. D. Carlson,et al.  Electrorheology at small strains and strain rates of suspensions of silica particles in silicone oil , 1987 .

[87]  Ramin Sedaghati,et al.  Nonlinear free vibration analysis of sandwich shell structures with a constrained electrorheological fluid layer , 2012 .

[88]  S.-B. Choi Electric Field-Dependent Vibration Characteristics of a Plate Featuring AN Electrorheological Fluid , 2000 .

[89]  John P. Coulter,et al.  Structural modeling and optimal control of electrorheological material based adaptive beams , 1995 .

[90]  Kexiang Wei,et al.  Experimental investigation on vibration characteristics of sandwich beams with magnetorheological elastomers cores , 2008 .

[91]  Distributed Vibration Control Using Electrorheological Fluids , .

[92]  Roger Stanway,et al.  A unified modelling and model updating procedure for electrorheological and magnetorheological vibration dampers , 2004 .

[94]  E. Korobko,et al.  On damping vibrations of three-layered beam containing magnetorheological elastomer , 2012 .

[95]  Kexiang Wei,et al.  Vibration characteristics of electrorheological elastomer sandwich beams , 2011 .

[96]  John P. Coulter,et al.  An Adaptive Beam Model with Electrorheological Material Based Applications , 1995 .

[97]  Y. Shih,et al.  Dynamic Characteristics and Dynamic Instability of Magnetorheological Material-based Adaptive Beams , 2006 .

[98]  Chih-Chien Cheng,et al.  Dynamic Characteristics of Sandwich Beam with Embedded Electro-Rheological Fluid , 1998 .

[99]  Dynamic Stability of a Sandwich Beam with an Electrorheological Fluid Core , 2013 .

[100]  John P. Coulter,et al.  A Comparative Study of AC and DC Electrorheological Material Based Adaptive Structures in Small Amplitude Vibration , 1996 .

[101]  Weihua Li,et al.  Viscoelastic properties of MR elastomers under harmonic loading , 2010 .

[102]  Weihua Li,et al.  Viscoelastic properties of MR fluids , 1999 .

[103]  D. Gamota,et al.  Dynamic mechanical studies of electrorheological materials: Moderate frequencies , 1991 .

[104]  S. K. Dwivedy,et al.  Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core , 2014 .

[105]  Yi-Qing Ni,et al.  Micro-vibration suppression of equipment supported on a floor incorporating magneto-rheological elastomer core , 2011 .

[106]  H. Altenbach,et al.  On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheological elastomer , 2014 .

[107]  Neil D. Sims,et al.  Modelling of smart fluid dampers , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[108]  Ling Zhang,et al.  An adaptive beam model and dynamic characteristics of magnetorheological materials , 2003 .

[109]  Y. Shih,et al.  Dynamic Stability of a Sandwich Beam with Magnetorheological Core # , 2006 .

[110]  Jia-Yi Yeh Active dynamic instability control analysis of polar orthotropic sandwich annular plate with electrorheological fluid damping treatment , 2012 .

[111]  M. Ramamoorthy,et al.  Vibration analysis of a partially treated laminated composite magnetorheological fluid sandwich plate , 2016 .

[112]  John P. Coulter,et al.  Engineering Applications of Electrorheological Materials , 1993 .

[113]  Wang Dian-fu,et al.  ER fluid based on inorganic/polymer blend particles and its adaptive viscoelastic properties , 2001 .

[114]  Chunking Lee,et al.  Finite Element Formulation of a Sandwich Beam with Embedded Electro-Rheological Fluids , 1995 .

[115]  John P. Coulter,et al.  Electrorheological Material Based Adaptive Beams Subjected to Various Boundary Conditions , 1995 .

[116]  Yi-Qing Ni,et al.  Magneto-rheological elastomer (MRE) based composite structures for micro-vibration control , 2010 .

[117]  Czesław I. Bajer,et al.  Semi-active control of a sandwich beam partially filled with magnetorheological elastomer , 2015 .

[118]  Liviu Librescu,et al.  Recent developments in the modeling and behavior of advanced sandwich constructions: a survey , 2000 .

[119]  S. M. Hasheminejad,et al.  Vibration suppression of an elastic plate by use of an electrorheological patch and constraining layer , 2010 .

[120]  Y. Liu,et al.  Dynamic characteristics of a beam specimen featuring electrorheological fluids , 1997 .

[121]  Subhash Rakheja,et al.  Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid , 2010 .

[122]  Michael J. Chrzan,et al.  High Strength Magneto- and Electro-rheological Fluids , 1993 .

[123]  S.B. Choi,et al.  An Active Vibration Tuning Methodology for Smart Flexible Structures Incorporating Electro-Rheological Fluids: A Proof-of-Concept Investigation , 1989, 1989 American Control Conference.

[124]  M. Mahjoob,et al.  Nonlinear vibration analysis of FGER sandwich beams , 2014 .

[125]  John P. Coulter,et al.  Analytical Modeling of Electrorheological Material Based Adaptive Beams , 1995 .

[126]  Brian R. Mace,et al.  Adaptive-passive control of vibration transmission in beams using electro/magnetorheological fluid filled inserts , 2001, IEEE Trans. Control. Syst. Technol..

[127]  J. L. Sproston,et al.  Applications of electro-rheological fluids in vibration control: a survey , 1996 .

[128]  S. O. Oyadiji,et al.  Applications of Electro-Rheological Fluids for Constrained Layer Damping Treatment of Structures , 1996 .

[129]  John P. Coulter,et al.  Electrorheological material based non-homogeneous adaptive beams , 1998 .

[130]  Seung-Bok Choi,et al.  Vibration characteristics of hollow cantilevered beams containing an electro-rheological fluid , 1993 .

[131]  Wei-Hsin Liao,et al.  Magnetorheological fluid dampers: a review of parametric modelling , 2011 .

[132]  Kexiang Wei,et al.  DYNAMIC ANALYSIS OF ROTATING ELECTRORHEOLOGICAL COMPOSITE BEAMS , 2005 .

[133]  M. Mahjoob,et al.  Optimal parameters estimation and vibration control of a viscoelastic adaptive sandwich beam incorporating an electrorheological fluid layer , 2014 .

[134]  Kon Well Wang,et al.  Feedback control of ER-fluid-based structures for vibration suppression , 1992 .

[135]  Y. Ni,et al.  Stochastic micro-vibration suppression of a sandwich plate using a magneto-rheological visco-elastomer core , 2014 .

[136]  M. Shabanimotlagh,et al.  Magnetic-field-dependent sound transmission properties of magnetorheological elastomer-based adaptive panels , 2010 .

[137]  Y. Choi,et al.  Response of Electrorheological Fluid-Filled Laminate Composites to Forced Vibration , 1992 .

[138]  R. A. Shenoi,et al.  Vibration Characteristics of Sandwich Beams with Steel Skins and Magnetorheological Elastomer Cores , 2010 .

[139]  M. Mahjoob,et al.  On the vibration behavior of functionally graded electrorheological sandwich beams , 2013 .

[140]  Jiun-Yeu Chen,et al.  Damping and vibration analysis of polar orthotropic annular plates with ER treatment , 2009 .

[141]  Seung-Bok Choi,et al.  Smart structures incorporating electro-rheological fluids for vibration-control and active-damping applications. An experimental investigation , 1989 .

[142]  Guang Meng,et al.  An experimental and analytical investigation of the dynamic characteristics of a flexible sandwich plate filled with electrorheological fluid , 2006 .

[143]  R. Vaicaitis,et al.  Nonlinear random vibrations of a sandwich beam adaptive to electrorheological materials , 2016 .

[144]  Melek Yalcintas,et al.  Vibration suppression capabilities of magnetorheological materials based adaptive structures , 2004 .

[145]  J. Carlson,et al.  Viscoelastic Properties of Magneto- and Electro-Rheological Fluids , 1994 .

[146]  In Lee,et al.  Dynamic Characteristics of ER Fluid-filled Composite Plate using Multielectrode Configuration , 2005 .

[147]  S. Hosseini-Hashemi,et al.  An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory , 2010 .

[148]  Jia-Yi Yeh,et al.  Dynamic stability of a sandwich beam with a constrained layer and electrorheological fluid core , 2004 .

[149]  Georges Bossis,et al.  Dynamic behavior analysis of a magnetorheological elastomer sandwich plate , 2014 .

[150]  R. Ditaranto Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams , 1965 .

[151]  N. Ganesan,et al.  Critical comparison of viscoelastic damping and electrorheological fluid core damping in composite sandwich skew plates , 2007 .

[152]  Kexiang Wei,et al.  Vibration Characteristics of Rotating Sandwich Beams Filled with Electrorheological Fluids , 2007 .

[153]  Quan Wang,et al.  Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part II: Dynamic properties , 2006 .

[154]  Jia-Yi Yeh Free vibration analysis of rotating polar orthotropic annular plate with ER damping treatment , 2011 .

[155]  Jia-Yi Yeh,et al.  Vibration of a sandwich plate with a constrained layer and electrorheological fluid core , 2004 .

[156]  Seung-Bok Choi,et al.  Modal Characteristics of a Flexible Smart Plate Filled with Electrorheological Fluids , 1999 .

[157]  Jia-Yi Yeh,et al.  Dynamic stability of a sandwich plate with a constraining layer and electrorheological fluid core , 2005 .

[158]  J. Snamina Optimal location of an active segment of magnetorheological fluid layer in a sandwich plate , 2011, 2011 12th International Carpathian Control Conference (ICCC).

[159]  Dynamic Characterization of Non-Homogeneous Magnetorheological Fluids Based Multi-Layer Beam , 2011 .

[160]  G. Zheng,et al.  Vibration Power Flow Analysis of a Submerged Constrained Layer Damping Cylindrical Shell , 2014 .

[161]  E. Korobko,et al.  Theory of Thin Adaptive Laminated Shells Based on Magnetorheological Materials and Its Application in Problems on Vibration Suppression , 2011 .

[162]  Haifeng Chen,et al.  Magnetorheological visco-elastomer and its application to suppressing microvibration of sandwich plates , 2012, Other Conferences.

[163]  Takehito Fukuda,et al.  Optimum vibration control of CFRP sandwich beam using electro-rheological fluids and piezoceramic actuators , 2000 .

[164]  J. L. Sproston,et al.  On the Mechanical Properties of Electro-Rheological Fluids , 1987 .

[165]  Investigation on the vibration characteristics of a sandwich beam with smart composites — MRF , 2006 .

[166]  J. Tani,et al.  Damping Effect of Multi-Layer Beams with Embedded Electro-Rheological Fluid , 1999 .

[167]  Brian S. Thompson,et al.  Dynamically-Tunable Smart Composites Featuring Electro-Rheological Fluids , 1990, Other Conferences.