A General View of Normalisation through Atomic Flows

Atomic flows are a geometric invariant of classical propositional proofs in deep inference. In this thesis we use atomic flows to describe new normal forms of proofs, of which the traditional normal forms are special cases, we also give several normalisation procedures for obtaining the normal forms. We define, and use to present our results, a new deep-inference formalism called the functorial calculus, which is more flexible than the traditional calculus of structures. To our surprise we are able to 1) normalise proofs without looking at their logical connectives or logical rules; and 2) normalise proofs in less than exponential time.

[1]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[2]  Lutz Straßburger From Deep Inference to Proof Nets , 2005 .

[3]  Lutz Straßburger,et al.  A system of interaction and structure V: the exponentials and splitting , 2011, Math. Struct. Comput. Sci..

[4]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[5]  Tom Gundersen,et al.  Normalisation Control in Deep Inference via Atomic Flows , 2007, Log. Methods Comput. Sci..

[6]  Alwen Tiu,et al.  A Local System for Intuitionistic Logic , 2006, LPAR.

[7]  Phiniki Stouppa A Deep Inference System for the Modal Logic S5 , 2007, Stud Logica.

[8]  François Lamarche,et al.  From Proof Nets to the Free *-Autonomous Category , 2006, Log. Methods Comput. Sci..

[9]  Lutz Straßburger,et al.  From Deep Inference to Proof Nets via Cut Elimination , 2011, J. Log. Comput..

[10]  Tom Gundersen,et al.  A Quasipolynomial Cut-Elimination Procedure in Deep Inference via Atomic Flows and Threshold Formulae , 2010, LPAR.

[11]  Pavel Pudlák,et al.  Monotone simulations of nonmonotone proofs , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[12]  Yves Guiraud The three dimensions of proofs , 2006, Ann. Pure Appl. Log..

[13]  Emil Jerábek,et al.  Proof Complexity of the Cut-free Calculus of Structures , 2009, J. Log. Comput..

[14]  Alessio Guglielmi,et al.  On the proof complexity of deep inference , 2009, TOCL.

[15]  Ozan Kahramanogullari,et al.  Maude as a Platform for Designing and Implementing Deep Inference Systems , 2008, RULE@RDP.

[16]  Alwen Tiu,et al.  A System of Interaction and Structure II: The Need for Deep Inference , 2005, Log. Methods Comput. Sci..

[17]  Alessio Guglielmi,et al.  A system of interaction and structure , 1999, TOCL.

[18]  Lutz Straßburger,et al.  Breaking Paths in Atomic Flows for Classical Logic , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[19]  Ozan Kahramanogullari Reducing Nondeterminism in the Calculus of Structures , 2006, LPAR.

[20]  Lutz Straßburger,et al.  A Local System for Linear Logic , 2002, LPAR.

[21]  Kai Brünnler Locality for Classical Logic , 2006, Notre Dame J. Formal Log..

[22]  François Lamarche,et al.  On Proof Nets for Multiplicative Linear Logic with Units , 2004, CSL.

[23]  Kai Brünnler Deep Inference and Its Normal Form of Derivations , 2006, CiE.

[24]  Samuel R. Buss,et al.  The Undecidability of k-Provability , 1991, Ann. Pure Appl. Log..

[25]  Tom Gundersen,et al.  A Proof Calculus Which Reduces Syntactic Bureaucracy , 2010, RTA.

[26]  Alwen Tiu,et al.  A Local System for Classical Logic , 2001, LPAR.

[27]  Stéphane Lengrand,et al.  On Two Forms of Bureaucracy in Derivations , 2005 .

[28]  R. Statman Bounds for proof-search and speed-up in the predicate calculus , 1978 .

[29]  François Lamarche,et al.  Constructing free Boolean categories , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[30]  A. Interpolants , cut elimination and flow graphs for the propositional calculus , 1997 .

[31]  Paola Bruscoli A Purely Logical Account of Sequentiality in Proof Search , 2002, ICLP.

[32]  Rajeev Goré,et al.  Classical Modal Display Logic in the Calculus of Structures and Minimal Cut-free Deep Inference Calculi for S5 , 2007, J. Log. Comput..

[33]  Ozan Kahramanogullari System BV is NP-complete , 2008, Ann. Pure Appl. Log..

[34]  Lutz Straßburger,et al.  MELL in the calculus of structures , 2003, Theor. Comput. Sci..

[35]  Lutz Straßburger,et al.  Non-commutativity and MELL in the Calculus of Structures , 2001, CSL.

[36]  Pavel Pudlák,et al.  Monotone simulations of non-monotone proofs , 2001, J. Comput. Syst. Sci..

[37]  Pietro Di Gianantonio Structures for Multiplicative Cyclic Linear Logic: Deepness vs Cyclicity , 2004, CSL.

[38]  Lutz Straßburger,et al.  A Non-commutative Extension of MELL , 2002, LPAR.

[39]  François Lamarche,et al.  Naming Proofs in Classical Propositional Logic , 2005, TLCA.

[40]  Kai Brünnler Cut Elimination inside a Deep Inference System for Classical Predicate Logic , 2006, Stud Logica.

[41]  Kai Brünnler Two Restrictions on Contraction , 2003, Log. J. IGPL.

[42]  Kai Brünnler,et al.  Deep sequent systems for modal logic , 2009, Arch. Math. Log..

[43]  H. Reichel,et al.  Deep Inference and Symmetry in Classical Proofs , 2003 .

[44]  Kai Brünnler,et al.  Atomic Cut Elimination for classical Logic , 2003, CSL.

[45]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[46]  Lutz Straßburger,et al.  Linear logic and noncommutativity in the calculus of structures , 2003 .