Fast Algorithm for Walsh Hadamard Transform on Sliding Windows

This paper proposes a fast algorithm for Walsh Hadamard Transform on sliding windows which can be used to implement pattern matching most efficiently. The computational requirement of the proposed algorithm is about 1.5 additions per projection vector per sample, which is the lowest among existing fast algorithms for Walsh Hadamard Transform on sliding windows.

[1]  Andrew W. Fitzgibbon,et al.  Image-Based Rendering Using Image-Based Priors , 2005, International Journal of Computer Vision.

[2]  Yacov Hel-Or,et al.  Real-time pattern matching using projection kernels , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  W. Cham,et al.  Fast motion estimation in Walsh Hadamard domain , 2005, 2005 International Symposium on Intelligent Signal Processing and Communication Systems.

[4]  Wojciech Szpankowski,et al.  A suboptimal lossy data compression based on approximate pattern matching , 1997, IEEE Trans. Inf. Theory.

[5]  H. Hel-Or,et al.  A Fast Block Motion Estimation Algorithm Using Gray Code Kernels , 2006, 2006 IEEE International Symposium on Signal Processing and Information Technology.

[6]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[7]  Shinichiro Omachi,et al.  Fast Template Matching With Polynomials , 2007, IEEE Transactions on Image Processing.

[8]  Yacov Hel-Or,et al.  The Gray-Code Filter Kernels , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  John L. Shanks,et al.  Computation of the Fast Walsh-Fourier Transform , 1969, IEEE Transactions on Computers.

[10]  Azriel Rosenfeld,et al.  Two-Stage Template Matching , 1977, IEEE Transactions on Computers.

[11]  Hagit Hel-Or,et al.  Irregular pattern matching using projections , 2005, IEEE International Conference on Image Processing 2005.

[12]  Wai-kuen Cham,et al.  Fast Motion Estimation for H.264/AVC in Walsh–Hadamard Domain , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[13]  R. J. Clarke,et al.  Dyadic symmetry and Walsh matrices , 1987 .

[14]  Roger M. Dufour,et al.  Template matching based object recognition with unknown geometric parameters , 2002, IEEE Trans. Image Process..

[15]  Orhan Torkul,et al.  An industrial visual inspection system that uses inductive learning , 2004, J. Intell. Manuf..