Multigrid solution of the Poisson—Boltzmann equation

A multigrid method is presented for the numerical solution of the linearized Poisson–Boltzmann equation arising in molecular biophysics. The equation is discretized with the finite volume method, and the numerical solution of the discrete equations is accomplished with multiple grid techniques originally developed for twodimensional interface problems occurring in reactor physics. A detailed analysis of the resulting method is presented for several computer architectures, including comparisons to diagonally scaled CG, ICCG, vectorized ICCG and MICCG, and to SOR provided with an optimal relaxation parameter. Our results indicate that the multigrid method is superior to the preconditioned CG methods and SOR and that the advantage of multigrid grows with the problem size. © 1993 John Wiley & Sons, Inc.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  P. A. Forsyth,et al.  Multigrid Solution of the Pressure Equation in Reservoir Simulation , 1983 .

[3]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[4]  J. A. McCammon,et al.  Solving the finite difference linearized Poisson‐Boltzmann equation: A comparison of relaxation and conjugate gradient methods , 1989 .

[5]  D. Rose,et al.  Analysis of a multilevel iterative method for nonlinear finite element equations , 1982 .

[6]  H. V. D. Vorst,et al.  High Performance Preconditioning , 1989 .

[7]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[8]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .

[9]  B. M. Fulk MATH , 1992 .

[10]  Kim A. Sharp,et al.  Incorporating solvent and ion screening into molecular dynamics using the finite‐difference Poisson–Boltzmann method , 1991 .

[11]  J. Pasciak,et al.  New convergence estimates for multigrid algorithms , 1987 .

[12]  Randolph E. Bank,et al.  An optimal order process for solving finite element equations , 1981 .

[13]  Martin H. Schultz,et al.  Elliptic problem solvers , 1981 .

[14]  Charles Tanford,et al.  Physical Chemistry of Macromolecules , 1961 .

[15]  J. E. Dendy Two multigrid methods for three-dimensional problems with discontinuous and anisotropic coefficients , 1987 .

[16]  B. J. Yoon,et al.  A boundary element method for molecular electrostatics with electrolyte effects , 1990 .

[17]  J. E. Dendy,et al.  MULTI-GRID AND ICCG FOR PROBLEMS WITH INTERFACES , 1981 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[20]  Peter A. Forsyth,et al.  Comparison of Fast Iterative Methods for Symmetric Systems , 1983 .

[21]  J. Dendy Black box multigrid , 1982 .

[22]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[23]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[24]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.