the double random current nesting field.
暂无分享,去创建一个
[1] Statistics of the Two-Dimensional Ferromagnet , 2020, Master of Modern Physics.
[2] Yvan Alain Velenik,et al. Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction , 2017 .
[3] H. Duminil-Copin. Random currents expansion of the Ising model , 2016, 1607.06933.
[4] M. Lis. The Planar Ising Model and Total Positivity , 2016, 1606.06068.
[5] Aran Raoufi. A note on continuity of magnetization at criticality for the ferromagnetic Ising model on amenable quasi-transitive graphs with exponential growth , 2016, 1606.03763.
[6] W. Werner,et al. A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field , 2015, 1511.05524.
[7] T. Lam. Totally nonnegative Grassmannian and Grassmann polytopes , 2015, 1506.00603.
[8] H. Duminil-Copin,et al. A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.
[9] Thomas Lam,et al. Dimers, webs, and positroids , 2014, J. Lond. Math. Soc..
[10] Vladas Sidoravicius,et al. Random Currents and Continuity of Ising Model’s Spontaneous Magnetization , 2013, 1311.1937.
[11] Cédric Boutillier,et al. Height representation of XOR-Ising loops via bipartite dimers , 2012, 1211.4825.
[12] H. Duminil-Copin,et al. The critical temperature for the Ising model on planar doubly periodic graphs , 2012, 1209.0951.
[13] Julien Dubédat. Exact bosonization of the Ising model , 2011, 1112.4399.
[14] Kelli Talaska,et al. A Formula for Plücker Coordinates Associated with a Planar Network , 2008, 0801.4822.
[15] David E Speyer,et al. Matching polytopes, toric geometry, and the totally non-negative Grassmannian , 2009 .
[16] A. Postnikov. Total positivity, Grassmannians, and networks , 2006, math/0609764.
[17] R. Kenyon,et al. Dimers and amoebae , 2003, math-ph/0311005.
[18] Yu. M. Zinoviev,et al. Spontaneous Magnetization in the Two-Dimensional Ising Model , 2003 .
[19] Olle Häggström,et al. The random-cluster model on a homogeneous tree , 1996 .
[20] M. Aizenman,et al. The phase transition in a general class of Ising-type models is sharp , 1987 .
[21] Michael Aizenman,et al. On the critical behavior of the magnetization in high-dimensional Ising models , 1986 .
[22] S. Sherman,et al. Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field , 1970 .
[23] M. Fisher. On the Dimer Solution of Planar Ising Models , 1966 .
[24] B. L. Waerden. Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen , 1941 .
[25] R. Peierls. On Ising's model of ferromagnetism , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.