the double random current nesting field.

Summary: We relate the planar random current representation introduced by R. Griffiths et al. [“Con-cavity of magnetization of an Ising ferromagnet in a positive external field”, )] to the dimer model. More precisely, we provide a measure-preserving map between double random currents (obtained as the sum of two independent random currents) on a planar graph and dimers on an associated bipartite graph. We also define a nesting field for the double random current, which, under this map, corresponds to the height function of the dimer model. As applications, we provide an alternative derivation of some of the bozonization rules ob-tained recently by J. Dubédat [“Exact bosonization of the Ising model”, ], and show that the spontaneous magnetization of the Ising model on a planar biperiodic graph vanishes at criticality.

[1]  Statistics of the Two-Dimensional Ferromagnet , 2020, Master of Modern Physics.

[2]  Yvan Alain Velenik,et al.  Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction , 2017 .

[3]  H. Duminil-Copin Random currents expansion of the Ising model , 2016, 1607.06933.

[4]  M. Lis The Planar Ising Model and Total Positivity , 2016, 1606.06068.

[5]  Aran Raoufi A note on continuity of magnetization at criticality for the ferromagnetic Ising model on amenable quasi-transitive graphs with exponential growth , 2016, 1606.03763.

[6]  W. Werner,et al.  A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field , 2015, 1511.05524.

[7]  T. Lam Totally nonnegative Grassmannian and Grassmann polytopes , 2015, 1506.00603.

[8]  H. Duminil-Copin,et al.  A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.

[9]  Thomas Lam,et al.  Dimers, webs, and positroids , 2014, J. Lond. Math. Soc..

[10]  Vladas Sidoravicius,et al.  Random Currents and Continuity of Ising Model’s Spontaneous Magnetization , 2013, 1311.1937.

[11]  Cédric Boutillier,et al.  Height representation of XOR-Ising loops via bipartite dimers , 2012, 1211.4825.

[12]  H. Duminil-Copin,et al.  The critical temperature for the Ising model on planar doubly periodic graphs , 2012, 1209.0951.

[13]  Julien Dubédat Exact bosonization of the Ising model , 2011, 1112.4399.

[14]  Kelli Talaska,et al.  A Formula for Plücker Coordinates Associated with a Planar Network , 2008, 0801.4822.

[15]  David E Speyer,et al.  Matching polytopes, toric geometry, and the totally non-negative Grassmannian , 2009 .

[16]  A. Postnikov Total positivity, Grassmannians, and networks , 2006, math/0609764.

[17]  R. Kenyon,et al.  Dimers and amoebae , 2003, math-ph/0311005.

[18]  Yu. M. Zinoviev,et al.  Spontaneous Magnetization in the Two-Dimensional Ising Model , 2003 .

[19]  Olle Häggström,et al.  The random-cluster model on a homogeneous tree , 1996 .

[20]  M. Aizenman,et al.  The phase transition in a general class of Ising-type models is sharp , 1987 .

[21]  Michael Aizenman,et al.  On the critical behavior of the magnetization in high-dimensional Ising models , 1986 .

[22]  S. Sherman,et al.  Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field , 1970 .

[23]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[24]  B. L. Waerden Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen , 1941 .

[25]  R. Peierls On Ising's model of ferromagnetism , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.