Estimation of the return period of rockfall blocks according to their size

Abstract. With reference to the rockfall risk estimation and the planning of rockfall protection devices, one of the most critical and most discussed problems is the correct definition of the design block by taking into account its return period. In this paper, a methodology for the assessment of the design block linked with its return time is proposed and discussed, following a statistical approach. The procedure is based on the survey of the blocks that were already detached from the slope and had accumulated at the foot of the slope in addition to the available historical data.

[1]  Olga Mavrouli,et al.  Simplified approach for obtaining the block volume distribution of fragmental rockfalls , 2013 .

[2]  Didier Hantz,et al.  An historical, geomechanical and probabilistic approach to rock-fall hazard assessment , 2003 .

[3]  Ezio Leporati The assessment of structural safety : a comparative statistical study of the evolution and use of level 3, level 2, and level 1 , 1979 .

[4]  Jordi Corominas,et al.  Size Distribution for Potentially Unstable Rock Masses and In Situ Rock Blocks Using LIDAR-Generated Digital Elevation Models , 2015, Rock Mechanics and Rock Engineering.

[5]  Bernardino Chiaia,et al.  Complexity and robustness of frame structures , 2013 .

[6]  Luuk Dorren,et al.  State of the art in rockfall – forest interactions , 2007 .

[7]  Fausto Guzzetti,et al.  The AVI project: A bibliographical and archive inventory of landslides and floods in Italy , 1994 .

[8]  G. Wieczorek,et al.  Rockfall hazard and risk assessment in the Yosemite Valley, California, USA , 2003 .

[9]  Daniele Peila,et al.  Evaluation of Behaviour of Rockfall Restraining Nets by Full Scale Tests , 1998 .

[10]  Daniele Peila,et al.  Use of Multi-Criteria Model to Compare Devices for the Protection of Roads against Rockfall , 2013 .

[11]  Jordi Corominas,et al.  A methodology to obtain the block size distribution of fragmental rockfall deposits , 2015, Landslides.

[12]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[13]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[14]  D. Mcclung The encounter probability for mountain slope hazards , 1999 .

[15]  Daniel Straub,et al.  Modeling and managing uncertainties in rock-fall hazards , 2008 .

[16]  Bernardino Chiaia,et al.  Impact of snow avalanche on buildings: Forces estimation from structural back-analyses , 2015 .

[17]  Michel Jaboyedoff,et al.  Structural analysis of Turtle Mountain (Alberta) using digital elevation model: Toward a progressive failure , 2009 .

[18]  S. Evans,et al.  Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia , 1999 .

[19]  Luca Placidi,et al.  Monitoring and compartmentalized structures , 2015 .

[20]  C. F. Lee,et al.  Frequency–volume relation and prediction of rainfall-induced landslides , 2001 .

[21]  D. Petley,et al.  Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion , 2005, Quarterly Journal of Engineering Geology and Hydrogeology.

[22]  Didier Hantz,et al.  Quantitative assessment of diffuse rock fall hazard along a cliff foot , 2011 .

[23]  A. K. Turner,et al.  Rockfall : characterization and control , 2012 .

[24]  F. Berger,et al.  A new approach of diffuse rockfall hazard , 2018 .

[25]  Daniele Peila,et al.  Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests , 2007 .

[26]  J. Corominas,et al.  Assessment of the Rockfall Frequency for Hazard Analysis at Solà d’Andorra (Eastern Pyrenees) , 2010 .

[27]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[28]  Giovanni B. Crosta,et al.  A probabilistic approach for landslide hazard analysis , 2014 .

[29]  N. Hovius,et al.  The characterization of landslide size distributions , 2001 .

[30]  Isaac Elishakoff,et al.  Probabilistic Theory of Structures , 1983 .

[31]  Scott A. Sisson,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2005 .

[32]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[33]  Francesco Laio,et al.  Can continuous streamflow data support flood frequency analysis? An alternative to the partial duration series approach , 2003 .

[34]  J. Malet,et al.  Recommendations for the quantitative analysis of landslide risk , 2013, Bulletin of Engineering Geology and the Environment.

[35]  Agnès Helmstetter,et al.  Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics , 2003 .

[36]  Vincent Labiouse,et al.  Considerations on Swiss methodologies for rock fall hazard mapping based on trajectory modelling , 2009 .

[37]  Monica Barbero,et al.  A reliability-based method for taking into account snowfall return period in the design of buildings in avalanche-prone areas , 2016, Natural Hazards.

[38]  Giovanni B. Crosta,et al.  Fragmentation in the Val Pola rock avalanche, Italian Alps , 2007 .

[39]  B. Chiaia,et al.  Fractal grain distribution in snow avalanche deposits , 2012 .

[40]  Daniele Peila,et al.  ROckfall risk MAnagement assessment: the RO.MA. approach , 2012, Natural Hazards.

[41]  Daniele Peila,et al.  Controllo delle barriere paramassi a rete per la loro gestione e manutenzione , 2015 .

[42]  Daniele Peila,et al.  Calcolo del tempo di ritorno dei crolli in roccia in funzione della volumetria , 2016 .

[43]  Agnès Helmstetter,et al.  Probabilistic approach to rock fall hazard assessment: potential of historical data analysis , 2002 .

[44]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[45]  A. Abellán,et al.  Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring , 2010 .

[46]  Daniele Peila,et al.  Technical Note: Design of rockfall net fences and the new ETAG 027 European guideline , 2009 .

[47]  D. Gibert,et al.  Bootstrap determination of the reliability of b-values: an assessment of statistical estimators with synthetic magnitude series , 2012, Natural Hazards.

[48]  Charles F. Richter,et al.  Earthquake magnitude, intensity, energy, and acceleration(Second paper) , 1956 .

[49]  Antonio Abellán,et al.  Rockfall monitoring by Terrestrial Laser Scanning ¿ case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain) , 2011 .

[50]  Niels C. Lind,et al.  Methods of structural safety , 2006 .

[51]  Daniele Peila,et al.  Barriere paramassi a rete. Interventi e dimensionamento , 2006 .

[52]  T. Dewez,et al.  Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France) , 2013 .

[53]  Comparison of block size distribution in rockfalls , 2015 .

[54]  James B. Snyder,et al.  Historical Rock Falls in Yosemite National Park, California , 2004 .

[55]  J. Corominas,et al.  Quantitative assessment of the residual risk in a rockfall protected area , 2005 .

[56]  Valerio De Biagi,et al.  Structural behavior of a metallic truss under progressive damage , 2016 .

[57]  Fausto Guzzetti,et al.  Probability distributions of landslide volumes , 2009 .