A transcriptional co-repressor that interacts with nuclear hormone receptors

[1]  Thorsten Heinzel,et al.  Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor , 1995, Nature.

[2]  William Bourguet,et al.  Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α , 1995, Nature.

[3]  G. Tong,et al.  Ligand Modulates the Interaction of Thyroid Hormone Receptor with the Basal Transcription Machinery (*) , 1995, The Journal of Biological Chemistry.

[4]  P. Chambon,et al.  The N‐terminal part of TIF1, a putative mediator of the ligand‐dependent activation function (AF‐2) of nuclear receptors, is fused to B‐raf in the oncogenic protein T18. , 1995, The EMBO journal.

[5]  R. Eisenman,et al.  Mad-max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3 , 1995, Cell.

[6]  L. Chin,et al.  An amino-terminal domain of Mxi1 mediates anti-myc oncogenic activity and interacts with a homolog of the Yeast Transcriptional Repressor SIN3 , 1995, Cell.

[7]  Toshihiro Tanaka,et al.  Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor , 1995, Nature.

[8]  D. Moore,et al.  Interaction of thyroid-hormone receptor with a conserved transcriptional mediator , 1995, Nature.

[9]  B. O’Malley,et al.  The tau 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing , 1995, Molecular and cellular biology.

[10]  D. Moore,et al.  Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. , 1995, Molecular endocrinology.

[11]  Roger Brent,et al.  Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins , 1994, Cell.

[12]  M. Parker,et al.  Interaction of proteins with transcriptionally active estrogen receptors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  U. Lendahl,et al.  Thyroid abnormalities and hepatocellular carcinoma in mice transgenic for v‐erbA. , 1994, The EMBO journal.

[14]  B. Raaka,et al.  Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor , 1994, Molecular and cellular biology.

[15]  K. Struhl,et al.  Functional dissection of the yeast Cyc8–Tupl transcriptional co-repressor complex , 1994, Nature.

[16]  G. Martin,et al.  Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. , 1994, Science.

[17]  R. Evans,et al.  Identification of a domain required for oncogenic activity and transcriptional suppression by v-erbA and thyroid-hormone receptor alpha. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Reinberg,et al.  Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Collins,et al.  A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Roeder,et al.  Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. , 1993, Genes & development.

[21]  S. Elledge,et al.  The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. , 1993, Genes & development.

[22]  K. Umesono,et al.  Functional inhibition of retinoic acid response by dominant negative retinoic acid receptor mutants. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Elledge,et al.  Durfee, T. et al. The Retinoblastoma protein associates with protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555-569 , 1993 .

[24]  R. Evans,et al.  A mutated retinoic acid receptor-alpha exhibiting dominant-negative activity alters the lineage development of a multipotent hematopoietic cell line. , 1992, Genes & development.

[25]  B. O’Malley,et al.  Kindred S thyroid hormone receptor is an active and constitutive silencer and a repressor for thyroid hormone and retinoic acid responses. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Chambon,et al.  Multiplicity generates diversity in the retinoic acid signalling pathways. , 1992, Trends in biochemical sciences.

[27]  T. Bugge,et al.  RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. , 1992, The EMBO journal.

[28]  R. Renkawitz,et al.  A transferable silencing domain is present in the thyroid hormone receptor, in the v‐erbA oncogene product and in the retinoic acid receptor. , 1992, The EMBO journal.

[29]  Z. Parandoosh,et al.  Interaction of glucocorticoid analogues with the human glucocorticoid receptor , 1992, The Journal of Steroid Biochemistry and Molecular Biology.

[30]  Alexander D. Johnson,et al.  Ssn6-Tup1 is a general repressor of transcription in yeast , 1992, Cell.

[31]  K. Umesono,et al.  Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling , 1992, Nature.

[32]  C. Glass,et al.  RXRβ: A coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements , 1991, Cell.

[33]  K. Umesono,et al.  A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR , 1991, Cell.

[34]  R. Evans,et al.  Characterization of DNA binding and retinoic acid binding properties of retinoic acid receptor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[35]  C. Malbon,et al.  Immunological approaches for probing receptor structure and function. , 1991, Trends in pharmacological sciences.

[36]  H. Beug,et al.  v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA , 1990, Cell.

[37]  R. Evans,et al.  Nuclear receptor that identifies a novel retinoic acid response pathway , 1990, Nature.

[38]  R. Renkawitz,et al.  Modular structure of a chicken lysozyme silencer: Involvement of an unusual thyroid hormone receptor binding site , 1990, Cell.

[39]  J. Harney,et al.  Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. , 1989, The New biologist.

[40]  M. Levine,et al.  Transcriptional repression of eukaryotic promoters , 1989, Cell.

[41]  H. Stunnenberg,et al.  Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product , 1989, Nature.

[42]  Klaus Damm,et al.  Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist , 1989, Nature.

[43]  R. Evans,et al.  Multiple and cooperative trans-activation domains of the human glucocorticoid receptor , 1988, Cell.

[44]  P. Chambon,et al.  The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function , 1988, Cell.

[45]  P. Chambon,et al.  The yeast UASG is a transcriptional enhancer in human hela cells in the presence of the GAL4 trans-activator , 1988, Cell.

[46]  M. Zenke,et al.  Characterization of the hormone‐binding domain of the chicken c‐erbA/thyroid hormone receptor protein. , 1988, The EMBO journal.

[47]  R. Evans,et al.  Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. , 1987, Science.

[48]  O. Gandrillon,et al.  Expression of the v-erbA oncogene in chicken embryo fibroblasts stimulates their proliferation in vitro and enhances tumor growth in vivo , 1987, Cell.

[49]  T. Graf,et al.  A single point mutation in erbA restores the erythroid transforming potential of a mutant avian erythroblastosis virus (AEV) defective in both erbA and erbB oncogenes. , 1987, The EMBO journal.

[50]  R. Evans,et al.  The c-erb-A gene encodes a thyroid hormone receptor , 1986, Nature.

[51]  H. Beug,et al.  The c-erb-A protein is a high-affinity receptor for thyroid hormone , 1986, Nature.

[52]  R. Evans,et al.  Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product , 1985, Nature.