Synthesis and Size-Dependent Crystallization of Colloidal Germanium Telluride

Colloidal nanocrystals have long been used to study the dependence of phase stability and transitions on size. Both structural phase stability and phase transitions change dramatically in the nanometre size regime where the surface plays a significant role in determining the overall energetics of the system. We investigate the solid-solid phase transformation of crystallization in amorphous GeTenanoparticles. We report a colloidal synthetic route to amorphous GeTenanoparticles. Using in situ X-ray diffraction while heating, we observe the crystallization of the nanoparticles and find a dramatic increase of the crystallization temperature of over 150 C above the bulk value. Using size-selected nanoparticle films, we show that the crystallization temperature depends strongly on the particle size. In addition, we measure the electrical resistance of nanoparticle films and observe over 5 orders of magnitude lower resistance for the crystalline film compared to the amorphous film. Finally, we discuss the implications of the size-dependence of crystallization in the context of both understanding the behavior of phase stability in the nanosize regime and applications to phase change memory devices.

[1]  V. Vasić,et al.  Transient bleaching of small lead sulfide colloids: influence of surface properties , 1990 .

[2]  A. Pirovano,et al.  Electronic switching effect and phase-change transition in chalcogenide materials , 2004, IEEE Electron Device Letters.

[3]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[4]  H. Wong,et al.  Synthesis of metal chalcogenide nanodot arrays using block copolymer-derived nanoreactors. , 2007, Nano letters.

[5]  Ross E. Muenchausen,et al.  Reactive Laser Ablation Synthesis of Nanosize Alumina Powder , 1992 .

[6]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[7]  A. Navrotsky,et al.  Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas , 1997 .

[8]  S. Tolbert,et al.  The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure , 1995 .

[9]  B. Korgel,et al.  Aligned Arrays of Te Nanorods Grown from the Faceted Surfaces of Colloidal GeTe Particles , 2008 .

[10]  Dmitri V Talapin,et al.  Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. , 2006, Journal of the American Chemical Society.

[11]  S. K. Bahl,et al.  Amorphous versus Crystalline GeTe Films. III. Electrical Properties and Band Structure , 1970 .

[12]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[13]  S. Tolbert,et al.  Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.

[14]  Hongkun Park,et al.  Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. , 2006, Nano letters.

[15]  R. Shelby,et al.  Phase change materials and their application to random access memory technology , 2008 .

[16]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[17]  A. Navrotsky Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Hongkun Park,et al.  Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy , 2002 .

[19]  A. Navrotsky,et al.  TiO2 Stability Landscape: Polymorphism, Surface Energy, and Bound Water Energetics , 2006 .

[20]  H. Wong,et al.  Phase change nanodot arrays fabricated using a self-assembly diblock copolymer approach , 2007 .

[21]  C. Wright,et al.  Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes , 2006, IEEE Transactions on Nanotechnology.

[22]  S. K. Bahl,et al.  Amorphous Versus Crystalline GeTe Films. II. Optical Properties , 1969 .

[23]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .

[24]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..

[25]  S. Tolbert,et al.  Pressure-induced structural transformations in Si nanocrystals: Surface and shape effects. , 1996, Physical review letters.

[26]  Yi Cui,et al.  Synthesis and characterization of phase-change nanowires. , 2006, Nano letters.

[27]  A. Navrotsky Energetics of nanoparticle oxides: interplay between surface energy and polymorphism† , 2003, Geochemical transactions.

[28]  Dong Yu,et al.  Germanium telluride nanowires and nanohelices with memory-switching behavior. , 2006, Journal of the American Chemical Society.

[29]  Han‐Ki Kim,et al.  STRUCTURAL EVOLUTION OF W NANO CLUSTERS WITH INCREASING CLUSTER SIZE , 1999 .

[30]  R. Shelby,et al.  Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. , 2007, Nature materials.

[31]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[32]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[33]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[34]  Stefan Blügel,et al.  Unravelling the interplay of local structure and physical properties in phase-change materials , 2006 .

[35]  David A. Thompson,et al.  The future of magnetic data storage technology , 2000, IBM J. Res. Dev..

[36]  V. Rohatgi,et al.  Synthesis and structural characterization of nanocrystalline aluminium oxide , 1994 .

[37]  F. Hua,et al.  Size-dependent melting properties of tin nanoparticles , 2006 .

[38]  E. F. Steigmeier,et al.  Soft phonon mode and ferroelectricity in GeTe , 1970 .

[39]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[40]  K. Komeya,et al.  Sintering of aluminium nitride: Particle size dependence of sintering kinetics , 1969 .

[41]  K. Johnston,et al.  High Yield of Germanium Nanocrystals Synthesized from Germanium Diiodide in Solution , 2005 .

[42]  M. Meyyappan,et al.  One-Dimensional Phase-Change Nanostructure: Germanium Telluride Nanowire , 2007 .

[43]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[44]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[45]  M. Budde,et al.  Nanocrystalline tin as a preparative tool: synthesis of unprotected nanoparticles of SnTe and SnSe and a new route to (PhSe)4Sn. , 2002, Inorganic chemistry.

[46]  Brian M. Tissue,et al.  Energy Crossovers in Nanocrystalline Zirconia , 2004 .