Large-eddy simulation using a discontinuous Galerkin spectral element method

In this paper we discuss the development of a robust, high-order discontinuous Galerkin (DG) spectral element method for large-eddy simulation (LES) of compressible ∞ows. The method secures geometrical ∞exibility through a fully unstructured grid (triangles in 2D and tetrahedral elements in 3D), allows for arbitrary order of accuracy and has excellent stability properties. An element based flltering technique is used in conjunction with the dynamic procedure to model the efiect of sub-grid scales. We aim to use the LES methodology for large-scale simulation in geometrically complex dump combustors. As a flrst step towards these simulations, we perform validation simulations of compressible, turbulent ∞ow in a plane channel with isothermal walls.

[1]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[2]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[3]  Bernardus J. Geurts,et al.  A priori tests of large eddy simulation of the compressible plane mixing layer , 1995 .

[4]  Joel H. Ferziger,et al.  A robust high-order compact method for large eddy simulation , 2003 .

[5]  Trong T. Bui,et al.  A parallel finite volume algorithm for large-eddy simulation of turbulent flows , 1998 .

[6]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[7]  K. Squires Dynamic subgrid-scale modeling of compressible turbulence , 1991 .

[8]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[9]  G.,et al.  TOWARD THE LARGE-EDDY SIMULATION OF COMPRESSIBLE TURBULENT FLOWS , 2022 .

[10]  Farzad Mashayek,et al.  Validation Study of a Multidomain Spectral Code for Simulation of Turbulent Flows , 2004 .

[11]  A. W. Vreman,et al.  Subgrid-modelling in LES of Compressible Flow , 1995 .

[12]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[13]  J. S. Hesthaveny,et al.  STABLE SPECTRAL METHODS FOR CONSERVATION LAWS ON TRIANGLES WITH UNSTRUCTURED GRIDS , 1997 .

[14]  Hugh Maurice Blackburn,et al.  Spectral element filtering techniques for large eddy simulation with dynamic estimation , 2003 .

[15]  A. Yoshizawa Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling , 1986 .

[16]  J. Jiménez Bifurcations and bursting in two-dimensional Poiseuille flow , 1987 .

[17]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[18]  M. Iskandarani,et al.  A Spectral Filtering Procedure for Eddy-Resolving Simulations with a Spectral Element Ocean Model , 1997 .

[19]  K. Jansen A stabilized finite element method for computing turbulence , 1999 .

[20]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[21]  Parviz Moin,et al.  Erratum: ‘‘A dynamic subgrid‐scale eddy viscosity model’’ [Phys. Fluids A 3, 1760 (1991)] , 1991 .

[22]  P. Sagaut,et al.  Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number , 2000 .

[23]  Steven A. Orszag,et al.  Instability mechanisms in shear-flow transition , 1988 .

[24]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[25]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .