Carrier-envelope phase stable, few-optical-cycle pulses tunable from visible to near IR

We report on the generation of few-optical-cycle pulses broadly tunable in the visible and near infrared with passively stabilized carrier-envelope phase (CEP). The system starts with an infrared optical parametric amplifier in which both pump and seed are derived from an amplified, non-CEP-stabilized Ti:sapphire laser. The passively stabilized idler beam is then spectrally broadened through white-light generation and used to seed a broadband optical parametric amplifier (OPA). Several amplification schemes can be used, including blue-pumped noncollinear OPA and blue-pumped or red-pumped OPA working around degeneracy, allowing for the production of few-optical-cycle light pulses tunable from 500 to 1600 nm. The OPA preserves the CEP stability of the seed.

[1]  Takayoshi Kobayashi,et al.  Carrier-envelope phase-controlled quantum interference in optical poling. , 2005, Physical review letters.

[2]  Takayoshi Kobayashi,et al.  Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared. , 1998, Optics letters.

[3]  T. Hänsch,et al.  Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer. , 2000, Optics letters.

[4]  Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier , 2008 .

[5]  J. Biegert,et al.  Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator. , 2004, Optics letters.

[6]  Takayoshi Kobayashi,et al.  Quasi-monocyclic near-infrared pulses with a stabilized carrier-envelope phase characterized by noncollinear cross-correlation frequency-resolved optical gating. , 2004, Optics letters.

[7]  K. Eikema,et al.  High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control. , 2005, Optics letters.

[8]  G. Cerullo,et al.  Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors. , 2001, Optics letters.

[9]  C. Manzoni,et al.  Few-optical-cycle pulses in the near-infrared from a noncollinear optical parametric amplifier. , 2007, Optics letters.

[10]  S. Silvestri,et al.  Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. , 2007, Optics letters.

[11]  L. Poletto,et al.  Isolated Single-Cycle Attosecond Pulses , 2006, Science.

[12]  J G Fujimoto,et al.  Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. , 2001, Optics letters.

[13]  C. Manzoni,et al.  300 μJ noncollinear optical parametric amplifier in the visible at 1 kHz repetition rate , 2006 .

[14]  M. Nisoli,et al.  Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification. , 2006, Optics letters.

[15]  Poppe,et al.  Controlling the phase evolution of few-cycle light pulses , 2000, Physical review letters.

[16]  J. Limpert,et al.  Ultra-broad bandwidth parametric amplification at degeneracy. , 2005, Optics express.

[17]  S. Silvestri,et al.  Tunable few-optical-cycle pulses with passive carrier-envelope phase stabilization from an optical parametric amplifier , 2007 .

[18]  Takao Fuji,et al.  Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. , 2002, Physical review letters.

[19]  Takao Fuji,et al.  Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. , 2002, Optics letters.

[20]  F Hache,et al.  Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. , 1995, Optics letters.

[21]  Ultrabroadband continuum amplification in the near infrared using BiB3O6 nonlinear crystals pumped at 800 nm. , 2007, Optics letters.

[22]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[23]  A. Baltuska,et al.  Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 microm. , 2006, Optics letters.

[24]  Andre Knoesen,et al.  Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses , 1995 .

[25]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[26]  Takayoshi Kobayashi,et al.  Self-stabilization of the carrier-envelope phase of an optical parametric amplifier verified with a photonic crystal fiber. , 2004, Optics letters.

[27]  H. Takada,et al.  Single-shot measurement of carrier-envelope phase changes by spectral interferometry. , 2001, Optics letters.

[28]  P. Colosimo,et al.  Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 microm from an optical filament. , 2007, Optics letters.

[29]  S. Silvestri,et al.  Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. , 1998, Optics letters.

[30]  C. Manzoni,et al.  Ultrabroadband self-phase-stabilized pulses by difference frequency generation , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[31]  Thomas Udem,et al.  Monolithic carrier-envelope phase-stabilization scheme. , 2005, Optics letters.

[32]  S. Silvestri,et al.  Compression of high-energy laser pulses below 5 fs. , 1997, Optics letters.

[33]  S. Silvestri,et al.  High-energy, few-optical-cycle pulses at 1.5 microm with passive carrier-envelope phase stabilization. , 2006, Optics express.

[34]  Z. Chang,et al.  Reduction of fast carrier-envelope phase jitter in femtosecond laser amplifiers. , 2006, Optics express.

[35]  P. Baum,et al.  Phase-coherent generation of tunable visible femtosecond pulses. , 2003, Optics letters.

[36]  S. Silvestri,et al.  Ultrafast optical parametric amplifiers , 2003 .