Optimization of VCSELs incorporating monolithic subwavelength high-refractive-index contrast surface grating mirrors

We present results of computer simulations of vertical cavity surface emitting lasers (VCSELs) using novel, highreflectivity monolithic high refractive-index contrast grating (MHCG) mirrors and their more advanced version, partially covered by a thin metal layer - metallic MHCG (mMHCG) mirrors. The first experimental realization of this new class of mirrors is presented and discussed. We show that the metal layer does not deteriorate the high reflectivity of an mMHCG mirror, but in contrary, is a crucial element which allows high reflectivity and additionally opens a way for a more efficient electrical pumping of a VCSEL. Comparison of results of thermal-electrical-carrier-gain self-consistent simulations of both MHCG- and mMHCG-based VCSELs is presented and discussed. It is shown that using mHCG mirror as a top mirror of a VCSEL improves electrical characteristics and greatly decreases the differential resistance of the device.

[1]  Tomasz Czyszanowski,et al.  Quantum-Cascade Vertical-Cavity Surface-Emitting Laser , 2018, IEEE Photonics Technology Letters.

[2]  Robert P. Sarzała,et al.  Enhanced single-fundamental LP01 mode operation of 650-nm GaAs-based GaInP/AlGaInP quantum-well VCSELs , 2010 .

[3]  Johan S. Gustavsson,et al.  High-Speed VCSELs With Strong Confinement of Optical Fields and Carriers , 2016, Journal of Lightwave Technology.

[4]  Joonhee Lee,et al.  Polarization-dependent GaN surface grating reflector for short wavelength applications. , 2009, Optics express.

[5]  M. Bugajski,et al.  Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. , 2015, Optics express.

[6]  Delai Zhou,et al.  High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers , 2002 .

[7]  M. Wasiak Mathematical rigorous approach to simulate an over-threshold VCSEL operation , 2011 .

[8]  K. Panajotov,et al.  PlaneWave Admittance Method- a novel approach for determining the electromagnetic modes in photonic structures. , 2005, Optics express.

[9]  Hui Li,et al.  Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85°C , 2014 .

[10]  R. Baets,et al.  First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs , 1998, IEEE Photonics Technology Letters.

[11]  C. Chang-Hasnain,et al.  Ultrabroadband mirror using low-index cladded subwavelength grating , 2004, IEEE Photonics Technology Letters.

[12]  Robert P. Sarzała,et al.  Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation , 2004 .

[13]  Tomasz Czyszanowski,et al.  Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system , 2017, Scientific Reports.

[14]  R. Michalzik,et al.  High-Output-Power Single-Higher-Order Transverse Mode VCSEL With Shallow Surface Relief , 2011, IEEE Photonics Technology Letters.

[15]  Robert P. Sarzała,et al.  Physics of mode selectivity of vertical-cavity surface-emitting diode lasers , 2010 .

[16]  James A. Lott,et al.  Monolithic Subwavelength High-Index-Contrast Grating VCSEL , 2015, IEEE Photonics Technology Letters.

[17]  B. Ben Bakir,et al.  Compact 1.55 μm room-temperature optically pumped photonic crystal mirror-VCSEL , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[18]  Tomasz Czyszanowski,et al.  Microphotoluminescence investigation of InAs quantum dot active region in 1.3 μm vertical cavity surface emitting laser structure , 2010 .

[19]  Hugo Thienpont,et al.  Optimal photonic-crystal parameters assuring single-mode operation of 1300 nm AlInGaAs vertical-cavity surface-emitting laser , 2009 .

[20]  Alexei Sirbu,et al.  Long-wavelength VCSELs: Power-efficient answer , 2009 .

[21]  Ł. Piskorski,et al.  Analysis of anticipated performance of 650-nm GaInP/AlGaInP quantum-well GaAs-based VCSELs at elevated temperatures , 2008 .

[22]  Kent D. Choquette,et al.  Progress in Photonic Crystal Vertical Cavity Lasers , 2005, IEICE Trans. Electron..

[23]  James A. Lott,et al.  Impact of the Oxide-Aperture Diameter on the Energy Efficiency, Bandwidth, and Temperature Stability of 980-nm VCSELs , 2015, Journal of Lightwave Technology.