The descent statistic on involutions is not log-concave
暂无分享,去创建一个
[1] Hermann Boerner,et al. Über die rationalen Darstellungen der allgemeinen linearen Gruppe , 1948 .
[2] D. Foata,et al. Fonctions symétriques et séries hypergéométriques basiques multivariées , 1985 .
[3] R. Stanley. Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .
[4] J. Karhumäki,et al. ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .
[5] Miklós Bóna. A Combinatorial Proof of the Log-Concavity of a Famous Sequence Counting Permutations , 2005, Electron. J. Comb..
[6] The signed Eulerian numbers on involutions , 2008 .
[7] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[8] W. M. B. Dukes. Permutation statistics on involutions , 2007, Eur. J. Comb..
[9] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[10] Ira M. Gessel,et al. Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.
[11] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .
[12] Vadim E. Levit,et al. Independence polynomials of well-covered graphs: Generic counterexamples for the unimodality conjecture , 2006, Eur. J. Comb..
[13] The Eulerian distribution on self evacuatedinvolutions , 2008, 0801.1390.
[14] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[15] John R. Stembridge,et al. Eulerian numbers, tableaux, and the Betti numbers of a toric variety , 1992, Discret. Math..
[16] David C. Kurtz,et al. A Note on Concavity Properties of Triangular Arrays of Numbers , 1972, J. Comb. Theory, Ser. A.
[17] Miklós Bóna,et al. Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs , 2000, J. Comb. Theory, Ser. A.
[18] Jiang Zeng,et al. The Eulerian distribution on involutions is indeed unimodal , 2006, J. Comb. Theory, Ser. A.
[19] Marilena Barnabei,et al. The Eulerian distribution on centrosymmetric involutions , 2009, Discret. Math. Theor. Comput. Sci..