The descent statistic on involutions is not log-concave

We establish a combinatorial connection between the sequence (i"n","k) counting the involutions on n letters with k descents and the sequence (a"n","k) enumerating the semistandard Young tableaux on n cells with k symbols. This allows us to show that the sequences (i"n","k) are not log-concave for some values of n, hence answering a conjecture due to F. Brenti.

[1]  Hermann Boerner,et al.  Über die rationalen Darstellungen der allgemeinen linearen Gruppe , 1948 .

[2]  D. Foata,et al.  Fonctions symétriques et séries hypergéométriques basiques multivariées , 1985 .

[3]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[4]  J. Karhumäki,et al.  ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .

[5]  Miklós Bóna A Combinatorial Proof of the Log-Concavity of a Famous Sequence Counting Permutations , 2005, Electron. J. Comb..

[6]  The signed Eulerian numbers on involutions , 2008 .

[7]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[8]  W. M. B. Dukes Permutation statistics on involutions , 2007, Eur. J. Comb..

[9]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[10]  Ira M. Gessel,et al.  Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.

[11]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[12]  Vadim E. Levit,et al.  Independence polynomials of well-covered graphs: Generic counterexamples for the unimodality conjecture , 2006, Eur. J. Comb..

[13]  The Eulerian distribution on self evacuatedinvolutions , 2008, 0801.1390.

[14]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[15]  John R. Stembridge,et al.  Eulerian numbers, tableaux, and the Betti numbers of a toric variety , 1992, Discret. Math..

[16]  David C. Kurtz,et al.  A Note on Concavity Properties of Triangular Arrays of Numbers , 1972, J. Comb. Theory, Ser. A.

[17]  Miklós Bóna,et al.  Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs , 2000, J. Comb. Theory, Ser. A.

[18]  Jiang Zeng,et al.  The Eulerian distribution on involutions is indeed unimodal , 2006, J. Comb. Theory, Ser. A.

[19]  Marilena Barnabei,et al.  The Eulerian distribution on centrosymmetric involutions , 2009, Discret. Math. Theor. Comput. Sci..