MEMS-based uncooled infrared bolometer arrays: a review

Uncooled infrared bolometer arrays have become the technology of choice for low-cost infrared imaging systems used in applications such as thermography, firefighting, driver night vision, security and surveillance. Uncooled infrared bolometer arrays are reaching performance levels which previously only were possible with cooled infrared photon detectors. With a continuously increasing market volume (> 100 000 units per year to date), the cost for uncooled infrared imaging chips are decreasing accordingly. In this paper we give an overview of the historical development of uncooled infrared bolometer technology and present the most important bolometer performance parameters. The different technology concepts, bolometer design approaches and bolometer materials (including vanadium oxide, amorphous silicon, silicon diodes, silicon-germanium and metals) are discussed in detail. This is followed by an analysis of the current state-of-the-art infrared bolometer technologies, the status of the infrared industry and the latest technology trends.

[1]  Frank Niklaus,et al.  Characterization of transfer-bonded silicon bolometer arrays , 2004, SPIE Defense + Commercial Sensing.

[2]  3A PJMManual Perceptual Content , 1994 .

[3]  Yutaka Tanaka,et al.  Performance of 320 x 240 bolometer-type uncooled infrared detector : Active and passive sensors for remote sensing , 2003 .

[4]  C B AIKEN,et al.  The production of film type bolometers with rapid response. , 1946, Review of Scientific Instruments.

[5]  Rex Watton,et al.  Ferroelectric IR bolometers - from ceramic hybrid arrays to direct thin film integration , 1996 .

[6]  C. Hewitt,et al.  640 × 512 17 μm microbolometer FPA and sensor development , 2007, SPIE Defense + Commercial Sensing.

[7]  Paul Muralt,et al.  Micromachined infrared detectors based on pyroelectric thin films , 2001 .

[8]  G. Stemme,et al.  Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors , 1997 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Tayfun Akin,et al.  Low-cost uncooled infrared detectors in CMOS process , 2003 .

[11]  R. N. Tait,et al.  Noise behavior of amorphous GexSi1−xOy for microbolometer applications , 2005 .

[12]  Rachel Wood Monolithic Silicon Microbolometer Arrays , 1997 .

[13]  Liang Dong,et al.  Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements , 2005, Journal of Microelectromechanical Systems.

[14]  A. Rogalski Infrared detectors: an overview , 2002 .

[15]  Mario Moreno,et al.  Fabrication and performance comparison of planar and sandwich structures of micro-bolometers with Ge thermo-sensing layer , 2007 .

[16]  Frank Niklaus,et al.  New concept for CMOS-compatible fabrication of uncooled infrared focal plane arrays using wafer-scale device transfer bonding , 2001, SPIE Defense + Commercial Sensing.

[17]  Yi Xinjian,et al.  INFRARED RESPONSIVITY OF UNCOOLED VO 2 -BASED THIN FILMS BOLOMETER , 2001 .

[18]  A. Crastes,et al.  Uncooled amorphous silicon 160 x 120 IRFPA with 25-μm pixel-pitch for large volume applications , 2007, SPIE Defense + Commercial Sensing.

[19]  Vishnu Gopal,et al.  Study of a pulsed laser deposited vanadium oxide based microbolometer array , 2003 .

[20]  Hyun-Joon Shin,et al.  Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer , 2005 .

[21]  R. A. Smith,et al.  The Detection and Measurement of Infrared Radiation , 1958 .

[22]  C. Minassian,et al.  Uncooled amorphous silicon 160 x 120 IRFPA with 25 μm pixel-pitch for large volume applications , 2007, SPIE/COS Photonics Asia.

[23]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[24]  Ming Hu,et al.  Preparation of vanadium oxide thin films with high temperature coefficient of resistance by facing targets d.c. reactive sputtering and annealing process , 2007 .

[25]  P. W. Kruse,et al.  Uncooled IR focal plane arrays , 1995, Optics & Photonics.

[26]  Linda Höglund,et al.  High signal-to-noise ratio quantum well bolometer materials , 2006, SPIE Security + Defence.

[27]  Joo-Hyung Kim,et al.  Free-standing epitaxial La1−x(Sr,Ca)xMnO3 membrane on Si for uncooled infrared microbolometer , 2005 .

[28]  Neal R. Butler,et al.  Performance limits of uncooled VOx microbolometer focal plane arrays , 2004, SPIE Defense + Commercial Sensing.

[29]  Mukti M. Rana,et al.  Radio Frequency sputtered Si1−xGex and Si1−xGexOy thin films for uncooled infrared detectors , 2006 .

[30]  Piet De Moor,et al.  Micromachined poly-SiGe bolometer arrays for infrared imaging and spectroscopy , 2003, Photonics Fabrication Europe.

[31]  R. Andrew Wood,et al.  Micromachined bolometer arrays achieve low-cost imaging , 1993 .

[32]  Donald P. Butler,et al.  Semiconducting YBaCuO microbolometers for uncooled broadband IR sensing , 2001, SPIE Defense + Commercial Sensing.

[33]  Margaret Kohin,et al.  Advances in uncooled technology at BAE SYSTEMS , 2003, SPIE Defense + Commercial Sensing.

[34]  Richard J. Blackwell,et al.  17 &mgr;m pixel 640 x 480 microbolometer FPA development at BAE Systems , 2007, SPIE Defense + Commercial Sensing.

[35]  Håkan Pettersson,et al.  Far infrared low-cost uncooled bolometer for automotive use , 2007 .

[36]  Eustace L. Dereniak,et al.  Uncooled infrared sensor performance , 1993, Optics & Photonics.

[37]  Göran Stemme,et al.  Performance model for uncooled infrared bolometer arrays and performance predictions of bolometers operating at atmospheric pressure , 2008 .

[38]  S. Moon,et al.  Excess noise in vanadium tungsten oxide bolometric material , 2007 .

[39]  F. J. De la Hidalga-W,et al.  Electrical properties of a boron doped amorphous silicon bolometer operating at low temperatures , 2003 .

[40]  S. N. Qiu,et al.  Room temperature YBaCuO microbolometers , 2000 .

[41]  G. Karunasiri,et al.  Performance of microbolometer focal plane arrays under varying pressure , 2000, IEEE Electron Device Letters.

[42]  Hyun-Joon Shin,et al.  Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers , 2003 .

[43]  Göran Stemme,et al.  Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays , 2001 .

[44]  V. G. Malyarov,et al.  Calculational modelling of the main characteristics of an uncooled linear microbolometer array , 2004 .

[45]  W. Blevin,et al.  Large-area bolometers of evaporated gold , 1965 .

[46]  Peter N. J. Dennis,et al.  Infrared Detectors , 1980, Other Conferences.

[47]  Tayfun Akin,et al.  CMOS‐based Thermal Sensors , 2005 .

[49]  Liang Dong,et al.  Monolithic Uncooled 8 × 8 Bolometer Arrays Based on Poly-SiGe Thermistor , 2007 .

[50]  Euisik Yoon,et al.  Electrical properties of photo-CVD boron-doped hydrogenated nanocrystalline silicon-carbide (p-nc-SiC : H) films for uncooled IR bolometer applications , 2003 .

[51]  Sihai Chen,et al.  Fabrication and performance of microbolometer arrays based on nanostructured vanadium oxide thin films , 2007 .

[52]  K. Liddiard Thin-film resistance bolometer IR detectors—II , 1984 .

[53]  吉原 邦夫 An investigation of the properties of bolometers made by vacuum evaporation , 1958 .

[54]  Paul A. Manning,et al.  Silicon foundry microbolometers: the route to the mass-market thermal imager , 2004, SPIE Defense + Commercial Sensing.

[55]  Roman V. Kruzelecky,et al.  Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition , 2004 .

[56]  Roland W. Gooch,et al.  Amorphous Silicon Microbolometer Technology , 2003 .

[57]  E. E. Barr,et al.  Construction and characteristics of evaporated nickel bolometers. , 1947, The Review of scientific instruments.

[58]  George D. Skidmore,et al.  Recent development of ultra small pixel uncooled focal plane arrays at DRS , 2007, SPIE Defense + Commercial Sensing.

[59]  Yu-Chong Tai,et al.  A 32*32 Parylene-Pyrolyzed Carbon Bolometer Imager , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[60]  Y. Watabe,et al.  A high performance amorphous Si/sub 1-x/C/sub x/:H thermistor bolometer based on micro-machined structure , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[61]  Håkan Pettersson,et al.  Low-cost far infrared bolometer camera for automotive use , 2007, SPIE Defense + Commercial Sensing.

[62]  Hyun-Joon Shin,et al.  Enhanced characteristics of an uncooled microbolometer using vanadium–tungsten oxide as a thermometric material , 2005 .

[63]  R. A. Wood Uncooled Microbolometer Infrared Sensor Arrays , 2001 .

[64]  I. B. Chistokhin,et al.  Polycrystalline layers of silicon-germanium alloy for uncooled IR bolometers , 2003, Saratov Fall Meeting.

[65]  William J. Parrish,et al.  Improvements in uncooled systems using bias equalization , 1999, Defense, Security, and Sensing.

[66]  Jean-Jacques Yon,et al.  Uncooled amorphous silicon technology enhancement for 25-μm pixel pitch achievement , 2003, SPIE Optics + Photonics.

[67]  Igor I. Taubkin,et al.  Infrared focal plane arrays: state of the art and development trends , 2003, Saratov Fall Meeting.

[68]  J. J. Yon,et al.  Infrared Microbolometer Sensors and Their Application in Automotive Safety , 2003 .

[69]  Daniel F. Murphy,et al.  Performance improvements for VOx microbolometer FPAs , 2004, SPIE Defense + Commercial Sensing.

[70]  L.T. Liu,et al.  A high performance single-chip uncooled a-Si TFT infrared sensor , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[71]  Peter Capper,et al.  Infrared Detectors and Emitters: Materials and Devices , 2001 .

[72]  Håkan Pettersson,et al.  Fulfilling the pedestrian protection directive using a long-wavelength infrared camera designed to meet both performance and cost targets , 2006, SPIE Photonics Europe.

[73]  Christian Menolfi,et al.  Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array , 2001 .

[74]  E. Barr,et al.  The infrared pioneers—III. Samuel Pierpont Langley , 1963 .

[75]  Nigel Robinson,et al.  FOA/DSTO uncooled IRFPA development , 1999, Defense, Security, and Sensing.

[76]  Jing Zhang,et al.  Micromachined Uncooled IR Bolometer Linear Array Using VO2 Thin Films , 2001 .

[77]  Ashok K. Sood,et al.  A comprehensive model for bolometer element and uncooled array design and imaging sensor performance prediction , 2006, SPIE Optics + Photonics.

[78]  M. Clement,et al.  IR uncooled bolometers based on amorphous Ge/sub x/Si/sub 1-x/O/sub y/ on silicon micromachined structures , 2002 .

[79]  Paul W. Kruse,et al.  Uncooled Thermal Imaging Arrays, Systems, and Applications , 2001 .

[80]  Paul W. Kruse Can the 300-K radiating background noise limit be attained by uncooled thermal imagers? , 2004, SPIE Defense + Commercial Sensing.

[81]  Håkan Pettersson,et al.  Uncooled infrared bolometer arrays operating in a low to medium vacuum atmosphere: performance model and tradeoffs , 2007, SPIE Defense + Commercial Sensing.

[82]  Naoki Oda,et al.  New thermally isolated pixel structure for high-resolution uncooled infrared FPAs , 2004, SPIE Defense + Commercial Sensing.

[83]  T. Tanaka,et al.  Infrared focal plane array incorporating silicon IC process compatible bolometer , 1996 .

[84]  P. Kruse,et al.  Integrated uncooled infrared detector imaging arrays , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.