Albumin-based nanoparticles as potential controlled release drug delivery systems.

Albumin, a versatile protein carrier for drug delivery, has been shown to be nontoxic, non-immunogenic, biocompatible and biodegradable. Therefore, it is ideal material to fabricate nanoparticles for drug delivery. Albumin nanoparticles have gained considerable attention owing to their high binding capacity of various drugs and being well tolerated without any serious side-effects. The current review embodies an in-depth discussion of albumin nanoparticles with respect to types, formulation aspects, major outcomes of in vitro and in vivo investigations as well as site-specific drug targeting using various ligands modifying the surface of albumin nanoparticles with special insights to the field of oncology. Specialized nanotechnological techniques like desolvation, emulsification, thermal gelation and recently nano-spray drying, nab-technology and self-assembly that have been investigated for fabrication of albumin nanoparticles, are also discussed. Nanocomplexes of albumin with other components in the area of drug delivery are also included in this review.

[1]  D. Begley,et al.  Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[2]  R. Arletti,et al.  Gelatin microspheres crosslinked with D,L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. , 2001, International journal of pharmaceutics.

[3]  Jianing Qi,et al.  Nanoparticles with dextran/chitosan shell and BSA/chitosan core--doxorubicin loading and delivery. , 2010, International journal of pharmaceutics.

[4]  M. Michaelis,et al.  Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells. , 2011, International journal of pharmaceutics.

[5]  J. Kreuter,et al.  Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: focus on cardio- and testicular toxicity. , 2007, International journal of pharmaceutics.

[6]  Guangzhao Zhang,et al.  Nanogels prepared by self-assembly of oppositely charged globular proteins. , 2006, Biopolymers.

[7]  S. Simões,et al.  Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. , 2000, Biochimica et biophysica acta.

[8]  J. Behr,et al.  Conjugation of Folate via Gelonin Carbohydrate Residues Retains Ribosomal-inactivating Properties of the Toxin and Permits Targeting to Folate Receptor Positive Cells* , 2001, The Journal of Biological Chemistry.

[9]  R. Arshady,et al.  Preparation of microspheres and microcapsules by interfacial polycondensation techniques. , 1989, Journal of microencapsulation.

[10]  P. Couvreur,et al.  Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[11]  P. Quincey,et al.  Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension. , 2010, Colloids and surfaces. B, Biointerfaces.

[12]  C. Remuñán-López,et al.  Enhancement of Nasal Absorption of Insulin Using Chitosan Nanoparticles , 1999, Pharmaceutical Research.

[13]  Patrick Soon-Shiong,et al.  Protein nanoparticles as drug carriers in clinical medicine. , 2008, Advanced drug delivery reviews.

[14]  H. Jennissen,et al.  Polyethylenimine‐coated albumin nanoparticles for BMP‐2 delivery , 2008, Biotechnology progress.

[15]  Steven S. Vogel,et al.  Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. , 2001, American journal of physiology. Lung cellular and molecular physiology.

[16]  P. Black,et al.  αvβ3 and αvβ5 Integrin expression in meningiomas , 2000 .

[17]  Patrick Soon-Shiong,et al.  Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[18]  P. Low,et al.  Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. , 2005, Analytical biochemistry.

[19]  J. Swarbrick,et al.  Albumin Microspheres as a Drug Delivery System: Relation Among Turbidity Ratio, Degree of Cross-linking, and Drug Release , 1993, Pharmaceutical Research.

[20]  E. Schacht,et al.  Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[21]  S. Sahoo,et al.  Nano-Sized Carriers for Drug Delivery , 2008 .

[22]  Carlo Bertucci,et al.  Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. , 2002, Current medicinal chemistry.

[23]  K. Strebhardt,et al.  Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. , 2006, Biomaterials.

[24]  A. Coombes,et al.  Preparation of Sterically Stabilized Human Serum Albumin Nanospheres Using a Novel Dextranox-MPEG Crosslinking Agent , 1994, Pharmaceutical Research.

[25]  J. Irache,et al.  Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[26]  A. Maghsoudi,et al.  5-Fluorouracil-Loaded BSA Nanoparticles: Formulation Optimization and In Vitro Release Study , 2008, AAPS PharmSciTech.

[27]  H von Briesen,et al.  Optimization of the preparation process for human serum albumin (HSA) nanoparticles. , 2003, International journal of pharmaceutics.

[28]  A. Malik,et al.  Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. , 2003, American journal of physiology. Lung cellular and molecular physiology.

[29]  J. Kreuter,et al.  Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[30]  L. D'ilario,et al.  Antibiotic delivery polyurethanes containing albumin and polyallylamine nanoparticles. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[31]  Felix Kratz,et al.  Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[32]  T. Dobashi,et al.  Thermosensitive polymer-conjugated albumin nanospheres as thermal targeting anti-cancer drug carrier. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[33]  J. Rader,et al.  Expression of αvβ3 integrin is less frequent in ovarian epithelial tumors of low malignant potential in contrast to ovarian carcinomas , 1997 .

[34]  M. D. Blanco,et al.  Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems , 2011 .

[35]  G. Sudlow,et al.  The characterization of two specific drug binding sites on human serum albumin. , 1975, Molecular pharmacology.

[36]  T. Tanabe,et al.  Recombinant human serum albumin hydrogel as a novel drug delivery vehicle , 2010 .

[37]  Ahmed O. Elzoghby,et al.  Casein-based formulations as promising controlled release drug delivery systems. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[38]  Dongmei Cun,et al.  Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. , 2007, International journal of pharmaceutics.

[39]  W. Foulkes,et al.  Folate-binding protein is a marker for ovarian cancer. , 1991, Cancer research.

[40]  A. Zimmer,et al.  Oligonucleotide-protamine-albumin nanoparticles: preparation, physical properties, and intracellular distribution. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[41]  M. Ghasemi,et al.  Production of protein nanoparticles for food and drug delivery system. , 2009 .

[42]  Sanju Dhawan,et al.  Prednisolone-loaded albumin nanospheres: in vitro and in vivo evaluation studies. , 2008, PDA journal of pharmaceutical science and technology.

[43]  J. Feijen,et al.  In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. , 2000, Biomaterials.

[44]  G. Najafpour,et al.  Production of biological nanoparticles from bovine serum albumin for drug delivery , 2006 .

[45]  J. Irache,et al.  Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. , 2002, International journal of pharmaceutics.

[46]  Erkki Ruoslahti,et al.  Targeting of albumin-embedded paclitaxel nanoparticles to tumors. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[47]  R. Banerjee,et al.  Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[48]  K. Csaky,et al.  Investigating the Movement of Intravitreal Human Serum Albumin Nanoparticles in the Vitreous and Retina , 2009, Pharmaceutical Research.

[49]  S. Damodaran,et al.  Food Proteins and Their Applications , 1997 .

[50]  N. Desai Nanoparticle albumin bound (nab) technology: targeting tumors through the endothelial gp60 receptor and SPARC , 2007 .

[51]  Changren Zhou,et al.  Polysaccharides-based nanoparticles as drug delivery systems. , 2008, Advanced drug delivery reviews.

[52]  Horst A von Recum,et al.  Electrospinning: applications in drug delivery and tissue engineering. , 2008, Biomaterials.

[53]  Catarina Pinto Reis,et al.  Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[54]  H. von Briesen,et al.  Adsorption of obidoxime onto human serum albumin nanoparticles: Drug loading, particle size and drug release , 2010, Journal of microencapsulation.

[55]  H. Uludaǧ,et al.  Pharmacokinetics and bone formation by BMP-2 entrapped in polyethylenimine-coated albumin nanoparticles. , 2009, Biomaterials.

[56]  Yasuyuki Maki,et al.  Preparation and characterization of thermo-responsive albumin nanospheres. , 2008, International journal of pharmaceutics.

[57]  T. Wagner,et al.  Incorporation of biodegradable nanoparticles into human airway epithelium cells-in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. , 2004, Biochemical and biophysical research communications.

[58]  J. Kreuter,et al.  Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[59]  Chi-Hwa Wang,et al.  Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. , 2008, Biomaterials.

[60]  E. Domenici,et al.  Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism. , 2006, Chirality.

[61]  Sanghoon Ko,et al.  Preparation of Size-Controlled BSA Nanoparticles by Intermittent Addition of Desolvating Agent , 2010 .

[62]  Ru Jiang,et al.  Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles , 2010, International journal of nanomedicine.

[63]  Joydip Kundu,et al.  Biopolymeric nanoparticles , 2010, Science and technology of advanced materials.

[64]  S. Sahoo,et al.  Nanotech approaches to drug delivery and imaging. , 2003, Drug discovery today.

[65]  Alexander V Kabanov,et al.  Polymer micelle with cross-linked ionic core. , 2005, Journal of the American Chemical Society.

[66]  J. Bellare,et al.  Aspirin Loaded Albumin Nanoparticles by Coacervation: Implications in Drug Delivery , 2005 .

[67]  Ya‐Ping Sun,et al.  Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution. , 2003, Journal of the American Chemical Society.

[68]  Gabriela A Silva,et al.  Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. , 2007, Advanced drug delivery reviews.

[69]  Laszlo Prokai,et al.  Prospects and challenges of the development of lipoprotein-based formulations for anti-cancer drugs , 2007, Expert opinion on drug delivery.

[70]  M. Jahanshahi,et al.  Protein nanoparticle: A unique system as drug delivery vehicles , 2008 .

[71]  Yi Liu,et al.  Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin. , 2006, International journal of biological macromolecules.

[72]  B. Suresh,et al.  A Study on the Preparation and Anti-Tumor Efficacy of Bovine Serum Albumin Nanospheres Containing 5-Fluorouracil , 2002, Drug development and industrial pharmacy.

[73]  Feng-qian Li,et al.  Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. , 2008, International journal of pharmaceutics.

[74]  V. Vogel,et al.  Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. , 2008, International journal of pharmaceutics.

[75]  P. Supaphol,et al.  Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends , 2010 .

[76]  J. Kreuter,et al.  Incorporation of obidoxime into human serum albumin nanoparticles: optimisation of preparation parameters for the development of a stable formulation , 2010, Journal of microencapsulation.

[77]  Tang Yang,et al.  Preparation and distribution of 5-fluorouracil (125)I sodium alginate-bovine serum albumin nanoparticles. , 1999, World journal of gastroenterology.

[78]  B. Lu,et al.  Ciprofloxacin-loaded bovine serum albumin microspheres: preparation and drug-release in vitro. , 2001, Journal of microencapsulation.

[79]  L. Unsworth,et al.  Poly-L-lysine-coated albumin nanoparticles: stability, mechanism for increasing in vitro enzymatic resilience, and siRNA release characteristics. , 2010, Acta biomaterialia.

[80]  R. Löbenberg,et al.  Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. , 2006, International journal of pharmaceutics.

[81]  M. Roco Nanotechnology: convergence with modern biology and medicine. , 2003, Current opinion in biotechnology.

[82]  J. Kreuter,et al.  Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye. II. Co-administration with bioadhesive and viscous polymers , 1995 .

[83]  G. V. Patil,et al.  Biopolymer albumin for diagnosis and in drug delivery , 2003 .

[84]  Xiaoyuan Chen,et al.  Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. , 2011, International journal of pharmaceutics.

[85]  R. Xu,et al.  Targeted albumin-based nanoparticles for delivery of amphipathic drugs. , 2011, Bioconjugate chemistry.

[86]  J. Irache,et al.  Gamma Interferon Loaded onto Albumin Nanoparticles: In Vitro and In Vivo Activities against Brucella abortus , 2007, Antimicrobial Agents and Chemotherapy.

[87]  I. Riemann,et al.  Enhanced drug targeting by attachment of an anti alphav integrin antibody to doxorubicin loaded human serum albumin nanoparticles. , 2010, Biomaterials.

[88]  D. Singodia,et al.  RGD modified albumin nanospheres for tumour vasculature targeting , 2011, The Journal of pharmacy and pharmacology.

[89]  Jianping Zhou,et al.  Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles. , 2009, International journal of pharmaceutics.

[90]  H. Tajmir-Riahi An Overview of Drug Binding to Human Serum Albumin: Protein Folding and Unfolding , 2007 .

[91]  M. Breunig,et al.  Polymers and nanoparticles: intelligent tools for intracellular targeting? , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[92]  S. Agarwal,et al.  Use of electrospinning technique for biomedical applications , 2008 .

[93]  K. Strebhardt,et al.  Highly Specific HER2-mediated Cellular Uptake of Antibody-modified Nanoparticles in Tumour Cells , 2004, Journal of drug targeting.

[94]  A. Ludwig,et al.  Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. , 2002, International journal of pharmaceutics.

[95]  J. Irache,et al.  Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[96]  S. Prakash,et al.  Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis , 2010, International journal of nanomedicine.

[97]  Xiangrong Song,et al.  Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. , 2004, International journal of pharmaceutics.

[98]  A. Maghsoudi,et al.  Optimization of PEGylation Conditions for BSA Nanoparticles Using Response Surface Methodology , 2010, AAPS PharmSciTech.

[99]  R. Danesi,et al.  Cardiac toxicity of antineoplastic anthracyclines. , 2003, Current medicinal chemistry. Anti-cancer agents.

[100]  Y. Zu,et al.  Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folateconjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM) , 2009, International journal of nanomedicine.

[101]  N. K. Jain,et al.  Suppression of agglomeration of ciprofloxacin-loaded human serum albumin nanoparticles , 2007, AAPS PharmSciTech.

[102]  H. Riahi AN OVERVIEW OF DRUG BINDING TO HUMAN SERUM ALBUMIN: PROTEIN FOLDING AND UNFOLDING , 2007 .

[103]  Xinru Wang,et al.  The preparation and characterization of folate-conjugated human serum albumin magnetic cisplatin nanoparticles , 2010, Journal of biomedical research.

[104]  Enzo Terreno,et al.  The extraordinary ligand binding properties of human serum albumin , 2005, IUBMB life.

[105]  R. Tan,et al.  Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. , 2011, International journal of pharmaceutics.

[106]  L. Trupin,et al.  Work life of persons with asthma, rhinitis, and COPD: A study using a national, population-based sample , 2006, Journal of occupational medicine and toxicology.

[107]  H. von Briesen,et al.  Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[108]  I. Fichtner,et al.  Antitumour activity of acid labile transferrin and albumin doxorubicin conjugates in in vitro and in vivo human tumour xenograft models , 1997 .

[109]  J. Kreuter,et al.  Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye. I: In vitro and in vivo characterisation , 1994 .

[110]  Jingqing Zhang,et al.  Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles , 2010, Archives of pharmacal research.

[111]  K. Strebhardt,et al.  Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[112]  B. Suresh,et al.  Study of Biodistribution of Methotrexate-Loaded Bovine Serum Albumin Nanospheres in Mice , 2000, Drug development and industrial pharmacy.

[113]  P. Couvreur,et al.  Nanotechnology: Intelligent Design to Treat Complex Disease , 2006, Pharmaceutical Research.

[114]  W. Sebald,et al.  Polyethylenimine-PEG coated albumin nanoparticles for BMP-2 delivery. , 2010, Biomaterials.

[115]  A. Rawat,et al.  Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles , 2006, Journal of drug targeting (Print).

[116]  F. Garbagnati,et al.  Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI‐007) , 2001, Cancer.

[117]  B. Suresh,et al.  Nonliposomal approach--a study of preparation of egg albumin nanospheres containing amphotericin-B. , 1999, Drug development and industrial pharmacy.

[118]  M. Amiji,et al.  Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. , 2005, Bioconjugate chemistry.

[119]  M. Groves,et al.  Gelatin Behaviour in Dilute Aqueous Solution: Designing a Nanoparticulate Formulation , 1999, The Journal of pharmacy and pharmacology.

[120]  A. Zimmer,et al.  Albumin-protamine-oligonucleotide nanoparticles as a new antisense delivery system. Part 1: physicochemical characterization. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[121]  Q. Ping,et al.  A novel lipoprotein-mimic nanocarrier composed of the modified protein and lipid for tumor cell targeting delivery. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[122]  J. Boye,et al.  Interactions Involved in the Gelation of Bovine Serum Albumin , 1996 .

[123]  F. Piquard,et al.  Safety and efficacy of a new transpulmonary echo contrast agent in echocardiographic studies in patients. , 1993, Journal of the American College of Cardiology.

[124]  K. Langer,et al.  Desolvation process and surface characterisation of protein nanoparticles. , 2000, International journal of pharmaceutics.

[125]  Michel Veillard,et al.  Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers , 1995 .

[126]  H. Fenniri,et al.  Nanotechnology-based drug delivery systems , 2007, Journal of occupational medicine and toxicology.

[127]  A. Malik,et al.  Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function , 2002, Histochemistry and Cell Biology.

[128]  H. von Briesen,et al.  Human serum albumin-polyethylenimine nanoparticles for gene delivery. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[129]  Ravi Kumar M.N.V. Nano and microparticles as controlled drug delivery devices. , 2000 .

[130]  J. Irache,et al.  Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. , 2005, Mini reviews in medicinal chemistry.

[131]  J. Kreuter,et al.  Hydrocortisone delivery to healthy and inflamed eyes using a micellar polysorbate 80 solution or albumin nanoparticles , 1994 .

[132]  Yan Li,et al.  Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. , 2011, Pharmacological research.

[133]  Russell J Mumper,et al.  Influence of formulation parameters on gadolinium entrapment and tumor cell uptake using folate-coated nanoparticles. , 2003, International journal of pharmaceutics.

[134]  K. Langer,et al.  Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. , 2008, International journal of pharmaceutics.

[135]  Cristina Saura,et al.  Nanoparticle albumin-bound (nab™)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer , 2010 .

[136]  K. Strebhardt,et al.  Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. , 2008, Biomaterials.

[137]  M. Ercan,et al.  Preparation, characterization and in vivo distribution of terbutaline sulfate loaded albumin microspheres. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[138]  Eun Seong Lee,et al.  L-histidine-based pH-sensitive anticancer drug carrier micelle: reconstitution and brief evaluation of its systemic toxicity. , 2008, International journal of pharmaceutics.

[139]  Patrick Soon-Shiong,et al.  Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[140]  M. Michaelis,et al.  Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. , 2007, International journal of pharmaceutics.

[141]  L. Russell,et al.  Short-term morphological response of the rat testis to administration of five chemotherapeutic agents. , 1991, The American journal of anatomy.

[142]  C. Leamon Folate-targeted drug strategies for the treatment of cancer. , 2008, Current opinion in investigational drugs.

[143]  R. Zernicke,et al.  Preparation of BMP-2 Containing Bovine Serum Albumin (BSA) Nanoparticles Stabilized by Polymer Coating , 2008, Pharmaceutical Research.

[144]  Matthias Wacker,et al.  Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties. , 2010, International journal of pharmaceutics.

[145]  Y. Zu,et al.  [Preparation, activity and targeting ability evaluation in vitro on folate mediated epigallocatechin-3-gallate albumin nanoparticles]. , 2009, Yao xue xue bao = Acta pharmaceutica Sinica.