A Combinatorial Algorithm to Compute Regularization Paths

Reference EPFL-ARTICLE-229257 URL: http://arxiv.org/abs/0903.4856 Record created on 2017-06-21, modified on 2017-06-21

[1]  I. Adler,et al.  On the Solutions of the Positive Semi-Definite Complementarity Problem. , 1975 .

[2]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Regina Benveniste One way to solve the parametric quadratic programming problem , 1981, Math. Program..

[4]  K. Ritter On Parametric Linear and Quadratic Programming Problems. , 1981 .

[5]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[6]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[7]  T. Terlaky,et al.  Some generalizations of the criss-cross method for quadratic programming , 1992 .

[8]  M. Best An Algorithm for the Solution of the Parametric Quadratic Programming Problem , 1996 .

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[11]  Akihisa Tamura,et al.  EP Theorems and Linear Complementarity Problems , 1998, Discret. Appl. Math..

[12]  D. Goldfarb,et al.  On parametric semidefinite programming , 1999 .

[13]  A. Gustafsson,et al.  Conjoint Analysis as an Instrument of Market Research Practice , 2000 .

[14]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[15]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[16]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[17]  Zaïd Harchaoui,et al.  A Machine Learning Approach to Conjoint Analysis , 2004, NIPS.

[18]  Bernhard Schölkopf,et al.  Kernel Methods for Implicit Surface Modeling , 2004, NIPS.

[19]  Robert Tibshirani,et al.  The Entire Regularization Path for the Support Vector Machine , 2004, J. Mach. Learn. Res..

[20]  Ji Zhu,et al.  Computing the Solution Path for the Regularized Support Vector Regression , 2005, NIPS.

[21]  Giorgos Zacharia,et al.  Generalized robust conjoint estimation , 2005 .

[22]  Eric Horvitz,et al.  Considering Cost Asymmetry in Learning Classifiers , 2006, J. Mach. Learn. Res..

[23]  Gang Wang,et al.  Two-dimensional solution path for support vector regression , 2006, ICML.

[24]  S. Rosset,et al.  Piecewise linear regularized solution paths , 2007, 0708.2197.

[25]  Gang Wang,et al.  A kernel path algorithm for support vector machines , 2007, ICML '07.

[26]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[27]  Klaus Mueller,et al.  Conjoint Analysis to Measure the Perceived Quality in Volume Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[28]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[29]  Gyemin Lee,et al.  The One Class Support Vector Machine Solution Path , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[30]  J. Spjøtvold Parametric Programming in Control Theory , 2008 .

[31]  Gang Wang,et al.  A New Solution Path Algorithm in Support Vector Regression , 2008, IEEE Transactions on Neural Networks.

[32]  Joachim Giesen,et al.  The Solution Path of the Slab Support Vector Machine , 2008, CCCG.

[33]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.