CALCULATION OF CREEP AND SHRINKAGE IN TALL CONCRETE BUILDINGS USING NONLINEAR STAGED CONSTRUCTION ANALYSIS

This paper attempts to calculate column shortening and differential shortening between columns and walls in concrete frames using a nonlinear staged construction analysis based on the Dirichlet series and direct integration methods. Prototype frame structures are idealized as two-dimensional and the finite element method (FEM) is used to calculate the creep and shrinkage strains. It is verified with respect to published experimental and analytical results. B3 model and methods such as AAEM, EMM, IDM, and RCM are used for verification purposes. For each frame, effects of creep and shrinkage parameters such as relative humidity percent, rate of construction, shrinkage parameter, and concrete strength have been taken into consideration separately. The manner in which creep and shrinkage can influence the behavior of concrete structures also has been discussed.