Quantum-chemical study on the supported precious metal catalyst

Abstract In this study, quantum-chemical calculations were performed on the interface characteristics of certain precious metal containing zirconia catalysts, viz., M/ZrO2; M=Rh, Pd or Pt. Using periodic density functional theory method, we were able to show that the Pd-supported zirconia catalyst (Pd/ZrO2) has outstanding performance for NO activation. However, it was noted that this catalyst is thermodynamically less stable than the analogous Pt/ZrO2 system. In addition, using accelerated quantum-chemical molecular dynamics method, we also clarified that the free Pt particle has completely negative surface charge while particle supported on the ZrO2 surface showed different surface density states.

[1]  J. Bitter,et al.  The state of Zirconia Suported Platinum Catalysts for CO2/CH4 Reforming , 1997 .

[2]  G. Calzaferri,et al.  Molecular geometries by the Extended Hueckel Molecular Orbital (EHMO) method , 1989 .

[3]  E. Rauh,et al.  High‐Temperature Phase Diagram for the System Zr. , 1977 .

[4]  P. Aldebert,et al.  Structure and Ionic Mobility of Zirconia at High Temperature , 1985 .

[5]  Yi Luo,et al.  Ring Opening of Methylenecyclopropane over Lanthanocene Catalyst : A Quantum-Chemical Molecular Dynamics Simulation Study , 2003 .

[6]  M. D. Rogers,et al.  The crystal structure of ZrO2 and HfO2 , 1959 .

[7]  B. Davis,et al.  The effect of sulfate on the crystal structure of zirconia , 1991 .

[8]  Roald Hoffmann,et al.  Description of diatomic molecules using one electron configuration energies with two‐body interactions , 1974 .

[9]  C. Catlow,et al.  Comparison of the bulk and surface properties of ceria and zirconia by ab initio investigations , 1999 .

[10]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[11]  J. Lercher,et al.  Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts , 1998 .

[12]  R. J. Hill,et al.  Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction , 1988 .

[13]  M. Kitajima,et al.  Tight-Binding Molecular Dynamics Study of Hydrogen Molecule Inside Silicon Crystal , 2000 .

[14]  Michele Parrinello,et al.  Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia , 1999 .

[15]  Momoji Kubo,et al.  Development of RYUGA for three-dimensional dynamic visualization of molecular dynamics results , 1995 .

[16]  Momoji Kubo,et al.  A Quantum Molecular Dynamics Simulation Study of the Initial Hydrolysis Step in Sol−Gel Process , 2003 .

[17]  A. Miyamoto,et al.  Computational Chemistry Study on Crystal Growth of InGaN/GaN , 2001 .

[18]  Alexis T. Bell,et al.  A Study of the Structure of Vanadium Oxide Dispersed on Zirconia , 1998 .

[19]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[20]  J. Bitter,et al.  Deactivation and Coke Accumulation during CO2/CH4 Reforming over Pt Catalysts , 1999 .

[21]  A. Shluger,et al.  Theoretical study of the stabilization of cubic-phase ZrO2 by impurities. , 1994, Physical review. B, Condensed matter.

[22]  D. K. Smith,et al.  The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 , 1965 .

[23]  K. Trueblood,et al.  The crystal structure of baddeleyite (monoclinic ZrO2) , 1959 .

[24]  Jack M. Miller,et al.  Spectroscopic Characterization of Sol−Gel-Derived Mixed Oxides , 1998 .

[25]  B. G. Anderson,et al.  Silica-Supported Zirconia. 1. Characterization by Infrared Spectroscopy, Temperature-Programmed Desorption, and X-ray Diffraction , 1995 .

[26]  M. Alfredsson,et al.  Modelling of Pd and Pt supported on the {111} and {011} surfaces of cubic-ZrO2 , 2001 .

[27]  G. Teufer,et al.  The crystal structure of tetragonal ZrO2 , 1962 .

[28]  B. Davis,et al.  Influence of zirconium salt precursors on the crystal structures of zirconia , 1992 .

[29]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[30]  K. Tanabe Surface and catalytic properties of ZrO2 , 1985 .

[31]  A. Anderson Derivation of the extended Hückel method with corrections: One electron molecular orbital theory for energy level and structure determinations , 1975 .

[32]  A. Anderson Derivation of and comments on Bonaccorsi‐Scrocco‐Tomasi potentials for electrophilic additions , 1974 .