Functional Characterization and Crystal Structure of the Bifunctional Thioesterase Catalyzing Epimerization and Cyclization in Skyllamycin Biosynthesis

[1]  Tongtong Geng,et al.  Discovery and Biosynthesis of Pepticinnamins G-M Featuring Three Enzymes-Catalyzed Nonproteinogenic Amino Acid Formation. , 2020, The Journal of organic chemistry.

[2]  Dong Liu,et al.  Piperazine ring formation by a single-module NRPS and cleavage by an α-KG-dependent nonheme iron dioxygenase in brasiliamide biosynthesis , 2020, Applied Microbiology and Biotechnology.

[3]  M. Ma,et al.  Functional Characterization and Crystal Structure of the Type II Peptidyl Carrier Protein ColA1a in Collismycins Biosynthesis † , 2020 .

[4]  C. Yun,et al.  Functional characterization and structural basis of an efficient di-C-glycosyltransferase from Glycyrrhiza glabra. , 2020, Journal of the American Chemical Society.

[5]  W. Zhang,et al.  The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility , 2019, Nuclear Science and Techniques.

[6]  Nicole M. Gaudelli,et al.  Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions , 2019, Nature Communications.

[7]  Tongtong Geng,et al.  Discovery of a Phenylamine-Incorporated Angucyclinone from Marine Streptomyces sp. PKU-MA00218 and Generation of Derivatives with Phenylamine Analogues. , 2019, Organic letters.

[8]  J. Chin,et al.  Trapping biosynthetic acyl-enzyme intermediates with encoded 2,3-diaminopropionic acid , 2018, Nature.

[9]  Kun Zhang,et al.  Upgrade of macromolecular crystallography beamline BL17U1 at SSRF , 2018 .

[10]  Wei Cheng,et al.  Fluostatins M–Q Featuring a 6-5-6-6 Ring Skeleton and High Oxidized A-Rings from Marine Streptomyces sp. PKU-MA00045 , 2018, Marine drugs.

[11]  S. Dong,et al.  Traceless β-mercaptan-assisted activation of valinyl benzimidazolinones in peptide ligations† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04148a , 2018, Chemical science.

[12]  Yaohao Li,et al.  Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation. , 2016, Journal of the American Chemical Society.

[13]  C. Boddy,et al.  Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? , 2016, Natural product reports.

[14]  L. Essen,et al.  Structure of the epimerization domain of tyrocidine synthetase A. , 2014, Acta crystallographica. Section D, Biological crystallography.

[15]  P. Trouillas,et al.  Stereochemistry and conformation of skyllamycin, a non-ribosomally synthesized peptide from Streptomyces sp. Acta 2897. , 2014, Chemistry.

[16]  Nicole M. Gaudelli,et al.  Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis , 2014, Nature chemical biology.

[17]  Roger G. Linington,et al.  Image-Based 384-Well High-Throughput Screening Method for the Discovery of Skyllamycins A to C as Biofilm Inhibitors and Inducers of Biofilm Detachment in Pseudomonas aeruginosa , 2013, Antimicrobial Agents and Chemotherapy.

[18]  R. Süssmuth,et al.  Cytochrome p450sky interacts directly with the nonribosomal peptide synthetase to generate three amino acid precursors in skyllamycin biosynthesis. , 2013, ACS chemical biology.

[19]  C. Walsh,et al.  Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. , 2013, Angewandte Chemie.

[20]  S. Bruner,et al.  Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases. , 2011, Chemistry & biology.

[21]  R. Süssmuth,et al.  Biosynthetic gene cluster of the non-ribosomally synthesized cyclodepsipeptide skyllamycin: deciphering unprecedented ways of unusual hydroxylation reactions. , 2011, Journal of the American Chemical Society.

[22]  E. Bardaji,et al.  Improvement of the Efficacy of Linear Undecapeptides against Plant-Pathogenic Bacteria by Incorporation of d-Amino Acids , 2011, Applied and Environmental Microbiology.

[23]  L. Du,et al.  PKS and NRPS release mechanisms. , 2010, Natural product reports.

[24]  M. Beyermann,et al.  Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences , 2007, Nature Protocols.

[25]  B. Shen,et al.  Chain Initiation in the Leinamycin-producing Hybrid Nonribosomal Peptide/Polyketide Synthetase from Streptomyces atroolivaceus S-140 , 2007, Journal of Biological Chemistry.

[26]  M. Fischbach,et al.  Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. , 2006, Chemical reviews.

[27]  C. Walsh,et al.  Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. , 2005, Chemistry & biology.

[28]  L. Bobek,et al.  Human Salivary Mucin MUC7 12-Mer-l and 12-Mer-d Peptides: Antifungal Activity in Saliva, Enhancement of Activity with Protease Inhibitor Cocktail or EDTA, and Cytotoxicity to Human Cells , 2005, Antimicrobial Agents and Chemotherapy.

[29]  D. A. Thayer,et al.  Macrolactamization of glycosylated peptide thioesters by the thioesterase domain of tyrocidine synthetase. , 2004, Chemistry & biology.

[30]  Michael D. Burkart,et al.  Biomimetic synthesis and optimization of cyclic peptide antibiotics , 2002, Nature.

[31]  T. Stachelhaus,et al.  Substrate recognition and selection by the initiation module PheATE of gramicidin S synthetase. , 2001, Journal of the American Chemical Society.

[32]  Juan R. Granja,et al.  Antibacterial agents based on the cyclic d,l-α-peptide architecture , 2001, Nature.

[33]  K. Ochiai,et al.  RP-1776, a novel cyclic peptide produced by Streptomyces sp., inhibits the binding of PDGF to the extracellular domain of its receptor. , 2001, The Journal of antibiotics.

[34]  M. Marahiel,et al.  Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. , 2001, Biochemistry.

[35]  M. Marahiel,et al.  Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase , 2000, Nature.

[36]  J. Walton,et al.  A Eukaryotic Alanine Racemase Gene Involved in Cyclic Peptide Biosynthesis* , 2000, The Journal of Biological Chemistry.

[37]  O. Volpert,et al.  Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. , 1999, Molecular pharmacology.

[38]  H. Kleinkauf,et al.  Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. , 1994, The Journal of biological chemistry.