R-RoMulOC: A unified tool for randomized and robust multiobjective control

Abstract In this paper, we describe the salient features of a newly released toolbox for Matlab in dealing with systems with uncertainties. The toolbox combines classical robust multiobjective design techniques with the recently developed randomized approach, providing to the user a wide range of tools for performing deterministic and probabilistic analysis and design.

[1]  Giuseppe Carlo Calafiore,et al.  A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs , 2007, Autom..

[2]  Dimitri Peaucelle,et al.  Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation , 2007, Autom..

[3]  Dimitri Peaucelle,et al.  S-Variable Approach to LMI-Based Robust Control , 2014 .

[4]  Ian R. Petersen,et al.  Robust control of uncertain systems: Classical results and recent developments , 2014, Autom..

[5]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[6]  Giuseppe Carlo Calafiore,et al.  Radial and Uniform Distributions in Vector and Matrix Spaces for Probabilistic Robustness , 1999 .

[7]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[8]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[9]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[10]  Roberto Tempo,et al.  Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..

[11]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[12]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[13]  Gary J. Balas,et al.  Robust Control Toolbox™ User's Guide , 2015 .

[14]  Fabrizio Dabbene,et al.  A Randomized Cutting Plane Method with Probabilistic Geometric Convergence , 2010, SIAM J. Optim..

[15]  Qing-Guo Wang,et al.  Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty , 2013, IEEE Transactions on Automatic Control.

[16]  Michel Verhaegen,et al.  An ellipsoid algorithm for probabilistic robust controller design , 2003, Syst. Control. Lett..

[17]  Giuseppe Carlo Calafiore,et al.  Stochastic algorithms for exact and approximate feasibility of robust LMIs , 2001, IEEE Trans. Autom. Control..

[18]  Tetsuya Iwasaki,et al.  LPV system analysis via quadratic separator for uncertain implicit systems , 2001, IEEE Trans. Autom. Control..

[19]  Giuseppe Carlo Calafiore,et al.  RACT: Randomized Algorithms Control Toolbox for MATLAB , 2008 .

[20]  D. Peaucelle,et al.  Robust Multi-Objective Control toolbox , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[21]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1997 .

[22]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.