The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans.

[1]  S. R. Wicks,et al.  CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. , 2000, Developmental biology.

[2]  P. Couble,et al.  Cloning and characterization of dRFX, the Drosophila member of the RFX family of transcription factors. , 2000, Gene.

[3]  T. Ishihara,et al.  A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. , 1999, Development.

[4]  Lesilee S. Rose,et al.  Role of a Class Dhc1b Dynein in Retrograde Transport of Ift Motors and Ift Raft Particles along Cilia, but Not Dendrites, in Chemosensory Neurons of Living Caenorhabditis elegans , 1999, The Journal of cell biology.

[5]  D. Tenen,et al.  Dimeric RFX Proteins Contribute to the Activity and Lineage Specificity of the Interleukin-5 Receptor α Promoter through Activation and Repression Domains , 1999, Molecular and Cellular Biology.

[6]  Cori Bargmann,et al.  Sensory activity affects sensory axon development in C. elegans. , 1999, Development.

[7]  L. Rose,et al.  Movement of motor and cargo along cilia , 1999, Nature.

[8]  R. Reed,et al.  Chemosensation: molecular mechanisms in worms and mammals. , 1999, Trends in genetics : TIG.

[9]  J. Rosenbaum,et al.  Intraflagellar Transport: The Eyes Have It , 1999, The Journal of cell biology.

[10]  Lesilee S. Rose,et al.  Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. , 1999, Molecular biology of the cell.

[11]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[12]  M. Chalfie,et al.  Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. , 1998, Development.

[13]  S. Elledge,et al.  The DNA Replication and Damage Checkpoint Pathways Induce Transcription by Inhibition of the Crt1 Repressor , 1998, Cell.

[14]  A. Hunt Molecular motors: Keeping the beat , 1998, Nature.

[15]  P. Beech,et al.  Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons , 1998, The Journal of cell biology.

[16]  Cornelia I Bargmann,et al.  Odorant Receptor Localization to Olfactory Cilia Is Mediated by ODR-4, a Novel Membrane-Associated Protein , 1998, Cell.

[17]  S. Pfaff,et al.  Neuronal diversification: development of motor neuron subtypes , 1998, Current Opinion in Neurobiology.

[18]  Cori Bargmann,et al.  The Gα Protein ODR-3 Mediates Olfactory and Nociceptive Function and Controls Cilium Morphogenesis in C. elegans Olfactory Neurons , 1998, Neuron.

[19]  Cori Bargmann,et al.  A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure. , 1998, Development.

[20]  C. Spike,et al.  Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. , 1998, Genetics.

[21]  D. Riddle C. Elegans II , 1998 .

[22]  I. Mori,et al.  Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[24]  G. Ruvkun,et al.  Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene , 1997, Neuron.

[25]  L. Avery,et al.  Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Chen,et al.  Interaction of transcription factors RFX1 and MIBP1 with the gamma motif of the negative regulatory element of the hepatitis B virus core promoter. , 1997, Virology.

[27]  Donald L Riddle,et al.  Genetic and Environmental Regulation of Dauer Larva Development , 1997 .

[28]  Gary Ruvkun,et al.  Patterning the Nervous System , 1997 .

[29]  Cori Bargmann,et al.  Chemotaxis and Thermotaxis , 1997 .

[30]  Cori Bargmann,et al.  A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans , 1996, Neuron.

[31]  P. Bucher,et al.  A consensus motif in the RFX DNA binding domain and binding domain mutants with altered specificity , 1996, Molecular and cellular biology.

[32]  D A Agard,et al.  Dispersion, aberration and deconvolution in multi‐wavelength fluorescence images , 1996, Journal of microscopy.

[33]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[34]  P. Emery,et al.  RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. , 1996, Nucleic acids research.

[35]  W. Reith,et al.  Regulation of MHC class II genes: lessons from a disease. , 1996, Annual review of immunology.

[36]  Cori Bargmann,et al.  Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans , 1995, Cell.

[37]  K. Johnson Keeping the beat: Form meets function in the Chlamydomonas flagellum , 1995 .

[38]  S. Dutcher,et al.  Flagellar assembly in two hundred and fifty easy-to-follow steps. , 1995, Trends in genetics : TIG.

[39]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[40]  W. Reinhold,et al.  The myc intron-binding polypeptide associates with RFX1 in vivo and binds to the major histocompatibility complex class II promoter region, to the hepatitis B virus enhancer, and to regulatory regions of several distinct viral genes , 1995, Molecular and cellular biology.

[41]  R. E. Stephens,et al.  Ciliogenesis in sea urchin embryos – a subroutine in the program of development , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[42]  K. Nishikawa,et al.  Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the external environment. , 1995, Journal of molecular biology.

[43]  M. McLeod,et al.  The sak1+ gene of Schizosaccharomyces pombe encodes an RFX family DNA-binding protein that positively regulates cyclic AMP-dependent protein kinase-mediated exit from the mitotic cell cycle , 1995, Molecular and cellular biology.

[44]  Wendy S. Schackwitz,et al.  Mutations affecting the chemosensory neurons of Caenorhabditis elegans. , 1995, Genetics.

[45]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[46]  P. Sternberg,et al.  The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. , 1994, Molecular biology of the cell.

[47]  J. Thomas,et al.  A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. , 1994, Genetics.

[48]  C. Ucla,et al.  RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins , 1994, Molecular and cellular biology.

[49]  G. Rubin,et al.  Determination of neuronal cell fate: lessons from the R7 neuron of Drosophila. , 1994, Annual review of neuroscience.

[50]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[51]  H. Horvitz,et al.  A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[52]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[53]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[54]  DH Hall,et al.  The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  W. Reith,et al.  MHC class II regulatory factor RFX has a novel DNA-binding domain and a functionally independent dimerization domain. , 1990, Genes & development.

[56]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[57]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[59]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[60]  J. Hodgkin,et al.  Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans , 1977, The Journal of comparative neurology.

[61]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[62]  Randle W. Ware,et al.  The nerve ring of the nematode Caenorhabditis elegans: Sensory input and motor output , 1975 .

[63]  S. Ward,et al.  Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans , 1975, The Journal of comparative neurology.

[64]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.