Min Morse: Approximability & Applications

We resolve an open problem posed by Joswig et al. by providing an $\tilde{O}(N)$ time, $O(\log^2(N))$-factor approximation algorithm for the min-Morse unmatched problem (MMUP) Let $\Lambda$ be the no. of critical cells of the optimal discrete Morse function and $N$ be the total no. of cells of a regular cell complex K. The goal of MMUP is to find $\Lambda$ for a given complex K. To begin with, we apply an approx. preserving graph reduction on MMUP to obtain a new problem namely the min-partial order problem (min-POP)(a strict generalization of the min-feedback arc set problem). The reduction involves introduction of rigid edges which are edges that demand strict inclusion in output solution. To solve min-POP, we use the Leighton- Rao divide-&-conquer paradigm that provides solutions to SDP-formulated instances of min-directed balanced cut with rigid edges (min-DBCRE). Our first algorithm for min-DBCRE extends Agarwal et al.'s rounding procedure for digraph formulation of ARV-algorithm to handle rigid edges. Our second algorithm to solve min-DBCRE SDP, adapts Arora et al.'s primal dual MWUM. In terms of applications, under the mild assumption1 of the size of topological features being significantly smaller compared to the size of the complex, we obtain an (a) $\tilde{O}(N)$ algorithm for computing homology groups $H_i(K,A)$ of a simplicial complex K, (where A is an arbitrary Abelian group.) (b) an $\tilde{O}(N^2)$ algorithm for computing persistent homology and (c) an $\tilde{O}(N)$ algorithm for computing the optimal discrete Morse-Witten function compatible with input scalar function as simple consequences of our approximation algorithm for MMUP thereby giving us the best known complexity bounds for each of these applications under the aforementioned assumption. Such an assumption is realistic in applied settings, and often a characteristic of modern massive datasets.

[1]  Ulrich Bauer,et al.  Optimal Topological Simplification of Discrete Functions on Surfaces , 2012, Discret. Comput. Geom..

[2]  Patricia Hersh On optimizing discrete Morse functions , 2005, Adv. Appl. Math..

[3]  Robert Ghrist,et al.  Elementary Applied Topology , 2014 .

[4]  V. Mathai,et al.  DISCRETE MORSE THEORY AND EXTENDED L2 HOMOLOGY , 1999 .

[5]  Yusuf Civan,et al.  Linear colorings of simplicial complexes and collapsing , 2006, J. Comb. Theory, Ser. A.

[6]  P. Dlotko,et al.  The Efficiency of a Homology Algorithm based on Discrete Morse Theory and Coreductions , 2010 .

[7]  David B. Shmoys,et al.  Cut problems and their application to divide-and-conquer , 1996 .

[8]  B. David Saunders,et al.  Smith normal form of dense integer matrices fast algorithms into practice , 2004, ISSAC '04.

[9]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[10]  Bruno Benedetti Smoothing discrete Morse theory , 2012, 1212.0885.

[11]  Rafael Ayala,et al.  A graph-theoretical approach to cancelling critical elements , 2011, Electron. Notes Discret. Math..

[12]  Paul D. Seymour,et al.  Packing directed circuits fractionally , 1995, Comb..

[13]  Jonathan Ariel Barmak,et al.  Algebraic Topology of Finite Topological Spaces and Applications , 2011 .

[14]  S. Smale,et al.  Global Analysis and Economics I: Pareto Optimum and a Generalization of Morse Theory† , 1975 .

[15]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[16]  Ingrid Hotz,et al.  Memory-Efficient Computation of Persistent Homology for 3D Images Using Discrete Morse Theory , 2011, 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images.

[17]  Amit Agarwal,et al.  O(√log n) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems , 2005, STOC '05.

[18]  R. Forman Witten–Morse theory for cell complexes††Partially supported by the National Science Foundation. , 1998 .

[19]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[20]  Sanjeev Arora,et al.  Fast algorithms for approximate semidefinite programming using the multiplicative weights update method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[21]  Marian Mrozek,et al.  Homology algorithm based on acyclic subspace , 2008, Comput. Math. Appl..

[22]  Manoj K. Chari On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..

[23]  Joseph Naor,et al.  Approximating Minimum Feedback Sets and Multicuts in Directed Graphs , 1998, Algorithmica.

[24]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[25]  Rafael Ayala,et al.  Perfect discrete Morse functions on 2-complexes , 2012, Pattern Recognit. Lett..

[26]  Michelle L. Wachs Poset Topology: Tools and Applications , 2006 .

[27]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[28]  D. R. J. Chillingworth,et al.  Collapsing three-dimensional convex polyhedra , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Satish Rao,et al.  Graph partitioning using single commodity flows , 2006, STOC '06.

[30]  Joel Friedman Computing Betti numbers via combinatorial Laplacians , 1996, STOC '96.

[31]  J. Jonsson Simplicial complexes of graphs , 2007 .

[32]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[33]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[34]  Elias Gabriel Minian,et al.  Strong Homotopy Types, Nerves and Collapses , 2009, Discret. Comput. Geom..

[35]  Don Sheehy,et al.  Linear-Size Approximations to the Vietoris–Rips Filtration , 2012, Discrete & Computational Geometry.

[36]  Marc E. Pfetsch,et al.  Computing Optimal Morse Matchings , 2006, SIAM J. Discret. Math..

[37]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[38]  Collapsing three-dimensional convex polyhedra: correction , 1980 .

[39]  Martin Grötschel,et al.  Facets of the linear ordering polytope , 1985, Math. Program..

[40]  Thomas Lewiner,et al.  Optimal discrete Morse functions for 2-manifolds , 2003, Comput. Geom..

[41]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[42]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[43]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[44]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[45]  Wolfgang Metzler,et al.  Two-dimensional homotopy and combinatorial group theory , 1993 .

[46]  Chao Chen,et al.  Efficient Computation of Persistent Homology for Cubical Data , 2012 .

[47]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[48]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[49]  Henry King,et al.  Generating Discrete Morse Functions from Point Data , 2005, Exp. Math..

[50]  Jochen Könemann,et al.  Faster and simpler algorithms for multicommodity flow and other fractional packing problems , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[51]  Ragnar Freij,et al.  Equivariant discrete Morse theory , 2009, Discret. Math..

[52]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[53]  R. Forman COMBINATORIAL NOVIKOV–MORSE THEORY , 2002 .

[54]  Volkmar Welker,et al.  Minimal Resolutions Via Algebraic Discrete Morse Theory , 2009 .

[55]  Neal E. Young,et al.  Randomized rounding without solving the linear program , 1995, SODA '95.

[56]  Joseph Naor,et al.  Divide-and-conquer approximation algorithms via spreading metrics , 2000, JACM.

[57]  Jonah Sherman,et al.  Nearly Maximum Flows in Nearly Linear Time , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[58]  Robin Forman,et al.  Morse Theory and Evasiveness , 2000, Comb..

[59]  R. Forman Morse Theory for Cell Complexes , 1998 .

[60]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[61]  Jirí Matousek,et al.  LC reductions yield isomorphic simplicial complexes , 2008, Contributions Discret. Math..

[62]  R. Forman Combinatorial vector fields and dynamical systems , 1998 .

[63]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[64]  Frank H. Lutz,et al.  Random Discrete Morse Theory and a New Library of Triangulations , 2013, Exp. Math..

[65]  松本 幸夫 An introduction to Morse theory , 2002 .

[66]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes , 1993, SCG '93.

[67]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[68]  Thomas Lewiner,et al.  Toward Optimality in Discrete Morse Theory , 2003, Exp. Math..

[69]  Marian Mrozek,et al.  Coreduction Homology Algorithm , 2009, Discret. Comput. Geom..

[70]  Benjamin A. Burton,et al.  Parameterized complexity of discrete morse theory , 2013, SoCG '13.

[71]  Yin Tat Lee,et al.  An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs, and its Multicommodity Generalizations , 2013, SODA.

[72]  Dmitry N. Kozlov,et al.  Combinatorial Algebraic Topology , 2007, Algorithms and computation in mathematics.

[73]  Karim A. Adiprasito,et al.  Filtered geometric lattices and Lefschetz Section Theorems over the tropical semiring , 2014, 1401.7301.

[74]  R. Grigorchuk,et al.  Topological and Asymptotic Aspects of Group Theory , 2006 .

[75]  Tamal K. Dey,et al.  Computing Topological Persistence for Simplicial Maps , 2012, SoCG.

[76]  Marc E. Pfetsch,et al.  Computing Optimal Discrete Morse Functions , 2004, CTW.

[77]  Alexander Engström,et al.  Discrete Morse Functions from Fourier Transforms , 2009, Exp. Math..

[78]  Lisa Fleischer,et al.  Approximating Fractional Multicommodity Flow Independent of the Number of Commodities , 2000, SIAM J. Discret. Math..