Validation tools: can they indicate the information content of macromolecular crystal structures?

The explosive increase in the number of published three-dimensionsal structures of macromolecules determined by X-ray analysis places a responsibility on experimentalists, referees and curators of databases to ensure correspondence between the structure parameters and data. Validation tools will evolve as more appropriate statistical techniques and new information, such as that from proteins analysed at atomic resolution, becomes available.

[1]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[2]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[3]  D. McRee Practical Protein Crystallography , 1993 .

[4]  G J Kleywegt,et al.  Efficient rebuilding of protein structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[5]  Chris Sander,et al.  Who checks the checkers? Four validation tools applied to eight atomic resolution structures. EU 3-D Validation Network. , 1998, Journal of molecular biology.

[6]  S J Wodak,et al.  SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. , 1999, Acta crystallographica. Section D, Biological crystallography.

[7]  D. Cruickshank Protein precision re-examined: Luzzati plots do not estimate final errors , 1996 .

[8]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[9]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[10]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[11]  F. Allen,et al.  The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information , 1979 .

[12]  H. Schenk,et al.  Computing in Crystallography , 1978 .

[13]  S. Wodak,et al.  Deviations from standard atomic volumes as a quality measure for protein crystal structures. , 1996, Journal of molecular biology.

[14]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[15]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[16]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[17]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[18]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[19]  J. Gillis,et al.  Computing Methods in Crystallography , 1966 .

[20]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[21]  C. Higgins,et al.  The crystal structures of the oligopeptide-binding protein OppA complexed with tripeptide and tetrapeptide ligands. , 1995, Structure.

[22]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[23]  David S. Moss,et al.  Error Estimates of Protein Structure Coordinates and Deviations from Standard Geometry by Full-Matrix Refinement of γB- and βB2-Crystallin , 1998 .

[24]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[25]  T J Oldfield,et al.  SQUID: a program for the analysis and display of data from crystallography and molecular dynamics. , 1992, Journal of molecular graphics.