A Domain Wall Model for Hysteresis in Ferroelastic Materials

We develop a model that quantifies constitutive nonlinearities and hysteresis inherent to ferroelastic compounds, with emphasis placed on shape memory alloys. We formulate the model in two steps. First, we use the Landau theory of phase transitions to characterize the effective Gibbs free energy for single-crystal and polycrystalline ferroelastics. The resulting nonlinear equations model equilibrium material behavior in the absence of impurities. Second, we incorporate pinning losses to account for the energy required to move domain walls across material inclusions. The full model is analogous to those developed by Jiles and Atherton for ferromagnetic compounds and Smith and Hom for ferroelectric materials. We illustrate aspects of the model through numerical simulations and comparisons with experimental stress-strain data.

[1]  Yibin Fu,et al.  Nonlinear elasticity : theory and applications , 2001 .

[2]  K. Ho,et al.  Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt , 1997 .

[3]  F. Falk LANDAU THEORY AND MARTENSITIC PHASE TRANSITIONS , 1982 .

[4]  Ken Gall,et al.  On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon , 2001 .

[5]  A. Planes,et al.  Elastic constants of BCC binary alloys near the A3B composition and their relation to martensitic transitions , 1990 .

[6]  Borut Bundara,et al.  SMA - Present State and Perspective for New Applications , 2000 .

[7]  Robert E. Newnham,et al.  Molecular Mechanisms in Smart Materials , 1997 .

[8]  A. Visintin Differential models of hysteresis , 1994 .

[9]  Ralph C. Smith Inverse compensation for hysteresis in magnetostrictive transducers , 2001 .

[10]  Huseyin Sehitoglu,et al.  NiTi experiments versus modeling: where do we stand? , 2000, Smart Structures.

[11]  H. Beige,et al.  Elastic Nonlinearity of KH3(SeO3)2 and KD3(SeO3)2 Crystals , 1982 .

[12]  Pol D. Spanos,et al.  A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys , 2001 .

[13]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[14]  Stefan Seelecke,et al.  Simulation and control of SMA actuators , 1999, Smart Structures.

[15]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[16]  C. Haas,et al.  Domain wall model for ferroelastics , 1974 .

[17]  Robert V. Kohn,et al.  Symmetry, texture and the recoverable strain of shape-memory polycrystals , 1996 .

[18]  J. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.

[19]  Inderjit Chopra,et al.  Comparative Evaluation of Shape Memory Alloy Constitutive Models with Experimental Data , 2001 .

[20]  Krzysztof Wilde,et al.  Base isolation system with shape memory alloy device for elevated highway bridges , 2000 .

[21]  Hisashi Naito,et al.  Inner loops of pseudoelastic hysteresis of shape memory alloys: Preisach approach , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[22]  V. Wadhawan Introduction to Ferroic Materials , 2000 .

[23]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[24]  D. Vanderbilt,et al.  Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.

[25]  E. Salje,et al.  Phase transitions in ferroelastic and co-elastic crystals , 1993 .

[26]  F. Falk,et al.  Pseudoelastic stress-strain curves of polycrystalline shape memory alloys calculated from single crystal data , 1989 .

[27]  C. M. Wayman,et al.  Compressive behavior and domain-related shape memory effect in LaNbO4 ceramics , 1996 .

[28]  L. C. Brinson,et al.  Simplifications and Comparisons of Shape Memory Alloy Constitutive Models , 1996 .

[29]  J. K. Knowles,et al.  Nonlinear Elasticity: Strain-energy Functions with Multiple Local Minima: Modeling Phase Transformations Using Finite Thermo-elasticity , 2001 .

[30]  D. Jiles,et al.  Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis , 1992 .

[31]  J. Tolédano,et al.  Order parameter symmetries and free-energy expansions for purely ferroelastic transitions , 1980 .

[32]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[33]  F. Falk,et al.  Driven domain walls in shape memory alloys , 1987 .

[34]  Abhijit Bhattacharyya,et al.  A theoretical framework of one-dimensional sharp phase fronts in shape memory alloys , 2002 .

[35]  E. Salje Ferroelasticity , 2000 .

[36]  T. Buchheit,et al.  Predicting the orientation-dependent stress-induced transformation and detwinning response of shape memory alloy single crystals , 1996 .

[37]  G. Barsch Landau Theory of the Displacive Phase Transformations in Gold-Cadmium and Titanium-Nickel Alloys , 2000 .

[38]  D. Bernardini On the macroscopic free energy functions for shape memory alloys , 2001 .

[39]  Jordan E. Massad,et al.  A unified methodology for modeling hysteresis in ferroelectric, ferromagnetic and ferroelastic materials , 2001 .

[40]  Jonathan D. Bartley-Cho,et al.  Improved design and performance of the SMA torque tube for the DARPA Smart Wing program , 1999, Smart Structures.

[41]  D. Lagoudas,et al.  Modeling of the thermomechanical behavior of porous shape memory alloys , 2001 .

[42]  Huibin Xu,et al.  On the pseudo-elastic hysteresis , 1991 .

[43]  Ralph C. Smith,et al.  A Domain Wall Model for Hysteresis in Piezoelectric Materials , 1999 .

[44]  Vasundara V. Varadan,et al.  Smart Structures and Materials 1997: Mathematics and Control in Smart Structures , 1995 .

[45]  J. K. Knowles,et al.  Nonlinear Elasticity: Strain-energy Functions with Multiple Local Minima: Modeling Phase Transformations Using Finite Thermo-elasticity , 2001 .

[46]  M. Berveiller,et al.  Mechanics of solids with phase changes , 1997 .

[47]  H. Kiefte,et al.  Comments on the hysteresis loop in ferroelastic LiCsSO4 , 1988 .

[48]  Craig L. Hom,et al.  Domain Wall Theory for Ferroelectric Hysteresis , 1999 .

[49]  M. Fejer,et al.  Nonlinear elasticity in proper ferroelastics , 1983 .

[50]  Dimitris C. Lagoudas,et al.  On the Correspondence between Micromechanical Models for Isothermal Pseudoelastic Response of Shape Memory Alloys and the Preisach Model for Hysteresis , 1997 .

[51]  Ralph C. Smith,et al.  Domain wall model for SMA characterization , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[52]  K. Brugger,et al.  Thermodynamic Definition of Higher Order Elastic Coefficients , 1964 .

[53]  A. Roytburd Elastic domains and polydomain phases in solids , 1993 .

[54]  Dragan Damjanovic LOGARITHMIC FREQUENCY DEPENDENCE OF THE PIEZOELECTRIC EFFECT DUE TO PINNING OF FERROELECTRIC-FERROELASTIC DOMAIN WALLS , 1997 .

[55]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[56]  J. Jacobs Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies , 1999 .

[57]  W. Hosford The mechanics of crystals and textured polycrystals , 1993 .

[58]  F. Falk,et al.  One-dimensional model of shape memory alloys , 1983 .

[59]  J. Craggs Applied Mathematical Sciences , 1973 .

[60]  H. Beige,et al.  Spontaneous strain in ferroelastic incommensurate [N(CH3)4]2CuCl4 crystals , 1997 .

[61]  Daniel S. Joseph,et al.  Parameter Identification for Preisach Models of Hysteresis , 2001 .

[62]  Fritz Falk,et al.  Constitutive theories of shape memory alloys related to microstructure , 1995, Smart Structures.

[63]  Dimitris C. Lagoudas,et al.  Adaptive Hysteresis Model for Model Reference Control with Actuator Hysteresis , 2000 .

[64]  Yongzhong Huo,et al.  A mathematical model for the hysteresis in shape memory alloys , 1989 .

[65]  Hiroyuki Tamai,et al.  Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building , 2002 .

[66]  J. Gonzalo Effective Field Approach to Phase Transitions and Some Applications to Ferroelectrics , 1991 .

[67]  Yoshiyuki Suzuki,et al.  Using NiTi SMA tendons for vibration control of coastal structures , 2001 .

[68]  F. Falk,et al.  Three-Dimensional Landau Theory Describing the Martensitic Phase Transformation of Shape-Memory Alloys , 1990 .

[69]  B. Phelps,et al.  Macroscopic models of magnetization , 2000 .

[70]  Reginald DesRoches,et al.  Seismic retrofit of simply supported bridges using shape memory alloys , 2002 .

[71]  Ken Gall,et al.  The role of texture in tension–compression asymmetry in polycrystalline NiTi , 1999 .

[72]  M. Fujimoto The Physics of Structural Phase Transitions , 1997 .