Label-free detection of Cordyceps sinensis using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor

[1]  P Bergveld,et al.  Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. , 1972, IEEE transactions on bio-medical engineering.

[2]  M. Matsuo Biomedical Cation Sensor Using Field Effect of Semiconductor , 1974 .

[3]  M. Esashi,et al.  Methods of isfet fabrication , 1981 .

[4]  Marvin H. White,et al.  A self-contained CMOS integrated pH sensor , 1988, Technical Digest., International Electron Devices Meeting.

[5]  K. Hayashi,et al.  PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. , 1991, PCR methods and applications.

[6]  N. Kinjo,et al.  Morphological and phylogenetic studies onCordyceps sinensis distributed in southwestern China , 2001 .

[7]  M. Chase,et al.  Molecular evidence for the anamorph—teleomorph connection in Cordyceps sinensis , 2001 .

[8]  L. Qu,et al.  Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA. , 2001, Biochemical systematics and ecology.

[9]  Wang Ning,et al.  Differentiation of Medicinal Cordyceps Species by rDNA ITS Sequence Analysis , 2002, Planta medica.

[10]  M. Schöning,et al.  Recent advances in biologically sensitive field-effect transistors (BioFETs). , 2002, The Analyst.

[11]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[12]  F. Uslu,et al.  Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. , 2004, Biosensors & bioelectronics.

[13]  Jang-Kyoo Shin,et al.  Detection of DNA and Protein Molecules Using an FET‐Type Biosensor with Gold as a Gate Metal , 2004 .

[14]  Ya-ping Zhang,et al.  Genetic Diversity and Taxonomic Implication of Cordyceps sinensis as Revealed by RAPD Markers , 1999, Biochemical Genetics.

[15]  Hsiao-Che Kuo,et al.  Identification of Chinese medicinal fungus Cordyceps sinensis by PCR-single-stranded conformation polymorphism and phylogenetic relationship. , 2005, Journal of agricultural and food chemistry.

[16]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[17]  B. Bauer,et al.  The traditional Chinese medicine Cordyceps sinensis and its effects on apoptotic homeostasis. , 2005, Journal of ethnopharmacology.

[18]  Gengfeng Zheng,et al.  Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species , 2006, Nature Protocols.

[19]  Lingdong Kong,et al.  Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. , 2006, Life sciences.

[20]  Hsiao-Che Kuo,et al.  Differentiation of Cordyceps Sinensis by a PCR-Single-Stranded Conformation Polymorphism-Based Method and Characterization of the Fermented Products in Taiwan , 2006 .

[21]  H. Kauserud,et al.  Accelerated nrDNA evolution and profound AT bias in the medicinal fungus Cordyceps sinensis. , 2007, Mycological research.

[22]  Hsiao-Che Kuo,et al.  Establishment and Application of PCR-SSCP Profile for Molecular Typing of Cordyceps Fungi , 2008 .

[23]  K. Feng,et al.  Random amplified polymorphic DNA (RAPD) analysis and the nucleosides assessment of fungal strains isolated from natural Cordyceps sinensis. , 2009, Journal of pharmaceutical and biomedical analysis.

[24]  Gil Shalev,et al.  Standard CMOS Fabrication of a Sensitive Fully Depleted Electrolyte-Insulator-Semiconductor Field Effect Transistor for Biosensor Applications , 2009, Sensors.

[25]  Ching-Tsan Huang,et al.  Identification of Cordyceps sinensis by 18S nrDNA Sequencing and Characterization of Fermented Products in Taiwan , 2009 .

[26]  Xingzhong Liu,et al.  Genetic diversity of Ophiocordyceps sinensis, a medicinal fungus endemic to the Tibetan Plateau: Implications for its evolution and conservation , 2009, BMC Evolutionary Biology.

[27]  M. Calame,et al.  Signal-to-noise ratio in dual-gated silicon nanoribbon field-effect sensors , 2010, 1010.3169.

[28]  W. Lei,et al.  rDNA-targeted PCR primers and FISH probe in the detection of Ophiocordyceps sinensis hyphae and conidia. , 2010, Journal of microbiological methods.

[29]  Won-Ju Cho,et al.  High performance silicon-on-insulator based ion-sensitive field-effect transistor using high-k stacked oxide sensing membrane , 2011 .

[30]  Yossi Rosenwaks,et al.  The interplay between pH sensitivity and label-free protein detection in immunologically modified nano-scaled field-effect transistor. , 2012, Biosensors & bioelectronics.

[31]  C. Toumazou,et al.  Simultaneous DNA amplification and detection using a pH-sensing semiconductor system , 2013, Nature Methods.

[32]  Christofer Toumazou,et al.  A new era of semiconductor genetics using ion-sensitive field-effect transistors: the gene-sensitive integrated cell , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  T. Dong,et al.  Study on identification of cordyceps-a Chinese traditional medicine , 2014 .

[34]  W. Bunjongpru,et al.  Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization. , 2015, Biosensors & bioelectronics.

[35]  T. Dong,et al.  Low-Cost Portable Polymer-based Micro Electrochemical Sensor (PMES) System for Rapid Detection of the Cordyceps Sinensis , 2015 .

[36]  Kai Sun,et al.  Low-Cost Nanoribbon Sensors for Protein Analysis in Human Serum Using a Miniature Bead-Based Enzyme-Linked Immunosorbent Assay. , 2016, Analytical chemistry.