Dyrk2 gene transfer suppresses hepatocarcinogenesis by promoting the degradation of Myc and Hras

[1]  S. Toyokuni,et al.  Mice lacking DYRK2 exhibit congenital malformations with lung hypoplasia and altered Foxf1 expression gradient , 2021, Communications biology.

[2]  Jianfei Huang,et al.  Kinase DYRK2 acts as a regulator of autophagy and an indicator of favorable prognosis in gastric carcinoma. , 2021, Colloids and surfaces. B, Biointerfaces.

[3]  B. Xin,et al.  Generation of combined hepatocellular‐cholangiocarcinoma through transdifferentiation and dedifferentiation in p53‐knockout mice , 2021, Cancer science.

[4]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[5]  Kohji Yamada,et al.  The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis , 2020, eLife.

[6]  M. Calzado,et al.  Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): molecular basis, functions and role in diseases , 2020, Cellular and Molecular Life Sciences.

[7]  Yulei N. Wang,et al.  Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. , 2020, The New England journal of medicine.

[8]  Z. Mei,et al.  Aquaporin-9, Mediated by IGF2, Suppresses Liver Cancer Stem Cell Properties via Augmenting ROS/β-Catenin/FOXO3a Signaling , 2020, Molecular Cancer Research.

[9]  Dominic Grün,et al.  A Human Liver Cell Atlas reveals Heterogeneity and Epithelial Progenitors , 2019, Nature.

[10]  M. Saruta,et al.  Forced expression of DYRK2 exerts anti-tumor effects via apoptotic induction in liver cancer. , 2019, Cancer letters.

[11]  H. Furukawa,et al.  Emergence of the Dedifferentiated Phenotype in Hepatocyte‐Derived Tumors in Mice: Roles of Oncogene‐Induced Epigenetic Alterations , 2019, Hepatology communications.

[12]  Michael R. Green,et al.  KLF4 Represses DYRK2 Inhibition of Self-renewal and Survival Through c-Myc and p53 in Leukemia Stem/Progenitor Cells. , 2019, Blood.

[13]  Weontae Lee,et al.  β‐Catenin‐RAS interaction serves as a molecular switch for RAS degradation via GSK3β , 2018, EMBO reports.

[14]  P. Schirmacher,et al.  EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. , 2018, Journal of hepatology.

[15]  M. Abecassis,et al.  AASLD guidelines for the treatment of hepatocellular carcinoma , 2018, Hepatology.

[16]  R. Mimoto,et al.  Dual‐specificity tyrosine‐regulated kinase 2 is a suppressor and potential prognostic marker for liver metastasis of colorectal cancer , 2017, Cancer science.

[17]  X. Chen,et al.  Critical role of Myc activation in mouse hepatocarcinogenesis induced by the activation of AKT and RAS pathways , 2017, Oncogene.

[18]  Kiyotsugu Yoshida,et al.  Diminished DYRK2 sensitizes hormone receptor-positive breast cancer to everolimus by the escape from degrading mTOR. , 2017, Cancer letters.

[19]  Tsunekazu Oikawa Cancer Stem cells and their cellular origins in primary liver and biliary tract cancers , 2016, Hepatology.

[20]  T. Hibi,et al.  Development of a novel mouse model of hepatocellular carcinoma with nonalcoholic steatohepatitis using a high-fat, choline-deficient diet and intraperitoneal injection of diethylnitrosamine , 2016, BMC Gastroenterology.

[21]  Sara R. Selitsky,et al.  Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells , 2015, Nature Communications.

[22]  A. Miyajima,et al.  Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. , 2014, Cell stem cell.

[23]  Y. Miki,et al.  DYRK2 controls the epithelial-mesenchymal transition in breast cancer by degrading Snail. , 2013, Cancer letters.

[24]  S. Knapp,et al.  Structures of Down Syndrome Kinases, DYRKs, Reveal Mechanisms of Kinase Activation and Substrate Recognition , 2013, Structure.

[25]  X. Wang,et al.  Sal‐like protein 4 (SALL4), a stem cell biomarker in liver cancers , 2013, Hepatology.

[26]  Hoguen Kim,et al.  Ras Stabilization Through Aberrant Activation of Wnt/β-Catenin Signaling Promotes Intestinal Tumorigenesis , 2012, Science Signaling.

[27]  Y. Miki,et al.  DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. , 2012, The Journal of clinical investigation.

[28]  D. Bar-Sagi,et al.  Regulating the regulator: post-translational modification of RAS , 2011, Nature Reviews Molecular Cell Biology.

[29]  E. Sandgren,et al.  Minimal cooperation between mutant Hras and c‐myc or TGFα in the regulation of mouse hepatocyte growth or transformation in vivo , 2011, Liver international : official journal of the International Association for the Study of the Liver.

[30]  Robert L. Sutherland,et al.  Cyclin D as a therapeutic target in cancer , 2011, Nature Reviews Cancer.

[31]  Masahiko Kushida,et al.  Dose-Related Induction of Hepatic Preneoplastic Lesions by Diethylnitrosamine in C57BL/6 Mice , 2011, Toxicologic pathology.

[32]  Yunfang Wang,et al.  Human hepatic stem cell and maturational liver lineage biology , 2011, Hepatology.

[33]  H. El‐Serag,et al.  Hepatocellular carcinoma. , 2011, The New England journal of medicine.

[34]  K. Kawahara,et al.  Expression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2) can be a favorable prognostic marker in pulmonary adenocarcinoma. , 2009, The Journal of thoracic and cardiovascular surgery.

[35]  M. Oshimura,et al.  Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. , 2009, Cell stem cell.

[36]  H. Nakauchi,et al.  Sall4 regulates cell fate decision in fetal hepatic stem/progenitor cells. , 2009, Gastroenterology.

[37]  X. Wang,et al.  EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. , 2009, Gastroenterology.

[38]  Chi V. Dang,et al.  The interplay between MYC and HIF in cancer , 2008, Nature Reviews Cancer.

[39]  Y. Miki,et al.  DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. , 2007, Molecular cell.

[40]  L. Belur,et al.  Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection , 2007, Nature Protocols.

[41]  D. Stolz,et al.  Structural impact of hydrodynamic injection on mouse liver , 2007, Gene Therapy.

[42]  M. Nyirenda,et al.  A Choline-Deficient Diet Exacerbates Fatty Liver but Attenuates Insulin Resistance and Glucose Intolerance in Mice Fed a High-Fat Diet , 2006, Diabetes.

[43]  S. Itohara,et al.  High-efficiency CAG-FLPe deleter mice in C57BL/6J background. , 2006, Experimental animals.

[44]  Christopher H. Contag,et al.  MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer , 2004, Nature.

[45]  A. Alavi,et al.  Akt Stimulates Aerobic Glycolysis in Cancer Cells , 2004, Cancer Research.

[46]  D. Lu,et al.  Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration. , 2004, World journal of gastroenterology.

[47]  S. Hirohashi,et al.  Expression profiling in multistage hepatocarcinogenesis: Identification of HSP70 as a molecular marker of early hepatocellular carcinoma , 2003, Hepatology.

[48]  G. Semenza,et al.  Oncogenic alterations of metabolism. , 1999, Trends in biochemical sciences.

[49]  M. Spector,et al.  Warburg effect revisited: merger of biochemistry and molecular biology. , 1981, Science.

[50]  N. Kaplan,et al.  LACTIC DEHYDROGENASE IN HUMAN NEOPLASTIC TISSUES. , 1964, Cancer research.