A class of optimal pary codes from one-weight codes over F p 1⁄2

We characterize the structures and properties of one-homogeneous weight linear codes Ck1,...,km over Fp1⁄2u =/uS of type 11pk2 ðp 1Þm with one unique nonzero weight w0. We introduce a distance-preserving Gray map from ðFp1⁄2u =/umSÞ to F m n p . By the Gray map, we obtain a class of optimal p-ary one-Hamming weight linear codes from one-homogeneous weight linear codes over Fp1⁄2u =/uS. We conclude by constructing some one-homogeneous codes over Fp1⁄2u =/uS. & 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

[1]  Irfan Siap,et al.  Linear Codes over $\mathbb{F}_{q}[u]/(u^s)$ with Respect to the Rosenbloom–Tsfasman Metric , 2006, Des. Codes Cryptogr..

[2]  Claude Carlet Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.

[3]  Yeow Meng Chee,et al.  Constructions for $q$-Ary Constant-Weight Codes , 2007, IEEE Transactions on Information Theory.

[4]  Suat Karadeniz,et al.  (1+v)-Constacyclic codes over F2+uF2+vF2+uvF2 , 2011, J. Frankl. Inst..

[5]  F. Lemmermeyer Error-correcting Codes , 2005 .

[6]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[7]  Jay A. Wood The Structure of Linear Codes of Constant Weight , 2001, Electron. Notes Discret. Math..

[8]  Shixin Zhu,et al.  (1+λu)-Constacyclic codes over Fp[u]/〈um〉 , 2010, J. Frankl. Inst..

[9]  T. Gulliver,et al.  Codes over $$\mathbb{F}_3 + u\mathbb{F}_3 $$ and Improvements to the Bounds on Ternary Linear Codes , 2001 .

[10]  A. J. Han Vinck,et al.  On the Constructions of Constant-Weight Codes , 1998, IEEE Trans. Inf. Theory.

[11]  Shanlin Yang,et al.  Good p-ary quasic-cyclic codes from cyclic codes over $$\mathbb{F}_p + v\mathbb{F}_p$$ , 2012, J. Syst. Sci. Complex..

[12]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[13]  Taher Abualrub,et al.  Constacyclic codes over F2+uF2 , 2009, J. Frankl. Inst..

[14]  Shixin Zhu,et al.  A class of constacyclic codes over Fp+vFp and its Gray image , 2011, Discret. Math..

[15]  Minjia Shi,et al.  Cyclic codes over F2 + vF2 , 2009, 2009 IEEE International Symposium on Information Theory.

[16]  San Ling,et al.  Zpk+1-Linear codes , 2002, IEEE Trans. Inf. Theory.

[17]  Shixin Zhu,et al.  Constacyclic and Cyclic Codes over F2 + uF2 + u2F2 , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[18]  C. Carlet One-weight Z4-linear Codes , 2000 .