Toward Hyperpolarization of Oil Molecules via Single Nitrogen Vacancy Centers in Diamond.

Efficient polarization of organic molecules is of extraordinary relevance when performing nuclear magnetic resonance (NMR) and imaging. Commercially available routes to dynamical nuclear polarization (DNP) work at extremely low temperatures, relying on the solidification of organic samples and thus bringing the molecules out of their ambient thermal conditions. In this work, we investigate polarization transfer from optically pumped nitrogen vacancy centers in diamond to external molecules at room temperature. This polarization transfer is described by both an extensive analytical analysis and numerical simulations based on spin bath bosonization and is supported by experimental data in excellent agreement. These results set the route to hyperpolarization of diffusive molecules in different scenarios and consequently, due to an increased signal, to high-resolution NMR.

[1]  Simon Schmitt,et al.  Qudi: A modular python suite for experiment control and data processing , 2016, SoftwareX.

[2]  James D. A. Wood,et al.  Microwave-free nuclear magnetic resonance at molecular scales , 2016, Nature Communications.

[3]  Martin B Plenio,et al.  Diamond Quantum Devices in Biology. , 2016, Angewandte Chemie.

[4]  A. Kentgens,et al.  Solid Effect DNP in a Rapid-melt setup. , 2016, Journal of magnetic resonance.

[5]  W. Köckenberger,et al.  Solid effect DNP polarization dynamics in a system of many spins. , 2016, Journal of magnetic resonance.

[6]  M. Plenio,et al.  Resonance-inclined optical nuclear spin polarization of liquids in diamond structures , 2015, 1510.03256.

[7]  M. Lukin,et al.  NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond , 2015, 1508.04191.

[8]  Jiangfeng Du,et al.  Towards chemical structure resolution with nanoscale nuclear magnetic resonance spectroscopy , 2015, 1506.05882.

[9]  M. B. Plenio,et al.  Optical hyperpolarization of 13 C nuclear spins in nanodiamond ensembles , 2015, 1504.02368.

[10]  J. Meijer,et al.  Probing molecular dynamics at the nanoscale via an individual paramagnetic centre , 2015, Nature Communications.

[11]  D. Englund,et al.  Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond. , 2014, Nano letters.

[12]  N Aharon,et al.  General scheme for the construction of a protected qubit subspace. , 2013, Physical review letters.

[13]  M. Plenio,et al.  Detecting and polarizing nuclear spins with double resonance on a single electron spin. , 2013, Physical review letters.

[14]  W K Hensinger,et al.  Simple manipulation of a microwave dressed-state ion qubit. , 2013, Physical review letters.

[15]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[16]  M. Plenio,et al.  Diamond-based single-molecule magnetic resonance spectroscopy , 2011, 1112.5502.

[17]  Ya Wang,et al.  Coherence-protected quantum gate by continuous dynamical decoupling in diamond. , 2012, Physical review letters.

[18]  Y. E. Shapiro,et al.  Structure and dynamics of hydrogels and organogels: An NMR spectroscopy approach , 2011 .

[19]  M. B. Plenio,et al.  Quantum gates and memory using microwave-dressed states , 2011, Nature.

[20]  F. Jelezko,et al.  Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. , 2010, Physical review letters.

[21]  M. Lukin,et al.  Imaging mesoscopic nuclear spin noise with a diamond magnetometer. , 2010, Journal of Chemical Physics.

[22]  Daniel A. Lidar,et al.  Optimal dynamical decoherence control of a qubit. , 2008, Physical review letters.

[23]  F. F. Fanchini,et al.  Continuously decoupling single-qubit operations from a perturbing thermal bath of scalar bosons , 2006, quant-ph/0611188.

[24]  J. Cirac,et al.  Quantum description of nuclear spin cooling in a quantum dot , 2006, cond-mat/0611438.

[25]  R. Griffin,et al.  In situ temperature jump high-frequency dynamic nuclear polarization experiments: enhanced sensitivity in liquid-state NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[26]  J. Eisert,et al.  Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom , 2004, quant-ph/0402004.

[27]  Daniel A. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[28]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[29]  J. Ardenkjær-Larsen,et al.  Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[31]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[32]  J L Potter,et al.  NMR relaxation of protons in tissues and other macromolecular water solutions. , 1982, Magnetic resonance imaging.

[33]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[34]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[35]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[36]  W. W.,et al.  The Nuclear Induction Experiment , 2022 .