A stabilized finite element predictor–corrector scheme for the incompressible Navier–Stokes equations using a nodal‐based implementation
暂无分享,去创建一个
Ramon Codina | R. Codina | A. Folch | A Folch
[1] J. Douglas,et al. Stabilized mixed methods for the Stokes problem , 1988 .
[2] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[3] Ramon Codina,et al. A general algorithm for compressible and incompressible flow—Part II. tests on the explicit form , 1995 .
[4] R. Codina. A stabilized finite element method for generalized stationary incompressible flows , 2001 .
[5] Pavel B. Bochev,et al. Analysis of Velocity-Flux First-Order System Least-Squares Principles for the Navier--Stokes Equations: Part I , 1998 .
[6] Ramon Codina,et al. A general algorithm for compressible and incompressible flows. Part III: The semi‐implicit form , 1998 .
[7] J. B. Perot,et al. An analysis of the fractional step method , 1993 .
[8] Jie Shen,et al. Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .
[9] S. Turek. a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .
[10] Ramon Codina,et al. A nodal-based implementation of a stabilized finite element method for incompressible flow problems , 2000 .
[11] Ramesh Natarajan,et al. A numerical method for incompressible viscous flow simulation , 1992 .
[12] Franco Brezzi,et al. Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .
[13] O. C. Zienkiewicz,et al. CBS versus GLS stabilization of the incompressible Navier–Stokes equations and the role of the time step as stabilization parameter , 2001 .
[14] T. Hughes,et al. Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations , 1993 .
[15] R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .
[16] R. Codina. Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .
[17] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[18] Ramon Codina,et al. Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .
[19] R. Codina. Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .
[20] L. Franca,et al. Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .
[21] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[22] O. Zienkiewicz,et al. The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems , 1999 .
[23] A. Huerta,et al. A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm , 1998 .
[24] Jim Douglas,et al. An absolutely stabilized finite element method for the stokes problem , 1989 .
[25] A. Quarteroni,et al. Factorization methods for the numerical approximation of Navier-Stokes equations , 2000 .
[26] O. Zienkiewicz,et al. A general algorithm for compressible and incompressible flow—Part I. the split, characteristic‐based scheme , 1995 .
[27] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[28] T. Hughes,et al. Large Eddy Simulation and the variational multiscale method , 2000 .