Entanglement Generation in Spatially Separated Systems Using Quantum Walk

We present a scheme for generating entanglement between two spatially separated systems from the spatial entanglement generated by the interference effect during the evolution of a single-particle quantum walk. Any two systems which can interact with the spatial modes entangled during the walk evolution can be entangled using this scheme. A notable feature is the ability to control the quantum walk dynamics and its localization at desired pair lattice sites irrespective of separation distance resulting in a substantial control and improvement in the entanglement output. Implementation schemes to entangle spatially separated atoms using quantum walk on a single atom is also presented.

[1]  D. Ahn,et al.  Entanglement generates entanglement: entanglement transfer by interaction , 2005 .

[2]  R. Laflamme,et al.  Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor , 2005, quant-ph/0507267.

[3]  Dirk Bouwmeester,et al.  Optical Galton board , 1999 .

[4]  W. Dur,et al.  Quantum walks in optical lattices , 2002, quant-ph/0207137.

[5]  Roberto Morandotti,et al.  Realization of quantum walks with negligible decoherence in waveguide lattices. , 2007, Physical review letters.

[6]  C. M. Chandrashekar Implementing the one-dimensional quantum (Hadamard) walk using a Bose-Einstein condensate , 2006 .

[7]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[8]  Alain Joye,et al.  Dynamical Localization of Quantum Walks in Random Environments , 2010, 1004.4130.

[9]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[10]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[11]  Hideo Aoki,et al.  Breakdown of an electric-field driven system: a mapping to a quantum walk. , 2005, Physical review letters.

[12]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[13]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[14]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  Norio Konno,et al.  Localization of an inhomogeneous discrete-time quantum walk on the line , 2009, Quantum Inf. Process..

[16]  Jiangfeng Du,et al.  Experimental implementation of a quantum random-walk search algorithm using strongly dipolar coupled spins , 2010 .

[17]  Chandrashekar Madaiah Discrete-Time Quantum Walk - Dynamics and Applications , 2010 .

[18]  Benjamin M. Zwickl,et al.  Experimental realization of a quantum quincunx by use of linear optical elements , 2005 .

[19]  M. Ali Can,et al.  Single-particle entanglement , 2004 .

[20]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[21]  M. B. Plenio,et al.  Cavity-loss-induced generation of entangled atoms , 1999 .

[22]  Jiangfeng Du,et al.  Experimental implementation of the quantum random-walk algorithm , 2002, quant-ph/0203120.

[23]  R. Simon,et al.  Minimal three-component SU(2) gadget for polarization optics , 1990 .

[24]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[25]  Eric Bach,et al.  One-dimensional quantum walks with absorbing boundaries , 2004, J. Comput. Syst. Sci..

[26]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[27]  E. Andersson,et al.  Entanglement preparation using symmetric multiports , 2010, 1010.2367.

[28]  A Schreiber,et al.  Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.

[29]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[30]  J. Mompart,et al.  One- and two-dimensional quantum walks in arrays of optical traps , 2005 .

[31]  C. Chin,et al.  Ultracold molecules: vehicles to scalable quantum information processing , 2008, 0812.1606.

[32]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[33]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[34]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[35]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[36]  C. M. Chandrashekar Disordered-quantum-walk-induced localization of a Bose-Einstein condensate , 2010, 1006.1978.

[37]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[38]  A Aspuru-Guzik,et al.  Discrete single-photon quantum walks with tunable decoherence. , 2010, Physical review letters.

[39]  Raymond Laflamme,et al.  Optimizing the discrete time quantum walk using a SU(2) coin , 2007, 0711.1882.

[40]  C. M. Chandrashekar,et al.  Spatial entanglement using a quantum walk on a many-body system , 2009, 0901.0671.